codellama-7b-humaneval-java-fim
This model was trained from scratch on an this dataset for FIM task. It achieves the following results on the evaluation set:
- Loss: 0.6155
Model description
Codellama-7b model trained for FIM on Java code dataset.
Intended uses & limitations
Bleh
Training and evaluation data
Dataset mentioned above
Training procedure
The following bitsandbytes
quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 30
- training_steps: 2000
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.6594 | 0.05 | 100 | 0.6927 |
0.6701 | 0.1 | 200 | 0.6784 |
0.6329 | 0.15 | 300 | 0.6690 |
0.6361 | 0.2 | 400 | 0.6629 |
0.5964 | 0.25 | 500 | 0.6545 |
0.6247 | 0.3 | 600 | 0.6461 |
0.6146 | 0.35 | 700 | 0.6407 |
0.5892 | 0.4 | 800 | 0.6364 |
0.5916 | 0.45 | 900 | 0.6308 |
0.6069 | 0.5 | 1000 | 0.6267 |
0.5804 | 0.55 | 1100 | 0.6242 |
0.5793 | 0.6 | 1200 | 0.6212 |
0.5836 | 0.65 | 1300 | 0.6195 |
0.5839 | 0.7 | 1400 | 0.6174 |
0.597 | 0.75 | 1500 | 0.6162 |
0.6042 | 0.8 | 1600 | 0.6158 |
0.5777 | 0.85 | 1700 | 0.6155 |
0.5683 | 0.9 | 1800 | 0.6155 |
0.5613 | 0.95 | 1900 | 0.6155 |
0.5597 | 1.0 | 2000 | 0.6155 |
Framework versions
- PEFT 0.5.0
- Transformers 4.34.0
- Pytorch 2.1.0+cu118
- Datasets 2.16.1
- Tokenizers 0.14.1
- Downloads last month
- 7