|
--- |
|
language: |
|
- sw |
|
library_name: sentence-transformers |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- generated_from_trainer |
|
- dataset_size:1115700 |
|
- loss:MatryoshkaLoss |
|
- loss:MultipleNegativesRankingLoss |
|
base_model: BAAI/bge-small-en-v1.5 |
|
metrics: |
|
- pearson_cosine |
|
- spearman_cosine |
|
- pearson_manhattan |
|
- spearman_manhattan |
|
- pearson_euclidean |
|
- spearman_euclidean |
|
- pearson_dot |
|
- spearman_dot |
|
- pearson_max |
|
- spearman_max |
|
widget: |
|
- source_sentence: Ndege mwenye mdomo mrefu katikati ya ndege. |
|
sentences: |
|
- Panya anayekimbia juu ya gurudumu. |
|
- Mtu anashindana katika mashindano ya mbio. |
|
- Ndege anayeruka. |
|
- source_sentence: >- |
|
Msichana mchanga mwenye nywele nyeusi anakabili kamera na kushikilia mfuko |
|
wa karatasi wakati amevaa shati la machungwa na mabawa ya kipepeo yenye |
|
rangi nyingi. |
|
sentences: |
|
- Mwanamke mzee anakataa kupigwa picha. |
|
- mtu akila na mvulana mdogo kwenye kijia cha jiji |
|
- Msichana mchanga anakabili kamera. |
|
- source_sentence: >- |
|
Wanawake na watoto wameketi nje katika kivuli wakati kikundi cha watoto |
|
wadogo wameketi ndani katika kivuli. |
|
sentences: |
|
- Mwanamke na watoto na kukaa chini. |
|
- Mwanamke huyo anakimbia. |
|
- Watu wanasafiri kwa baiskeli. |
|
- source_sentence: >- |
|
Mtoto mdogo anaruka mikononi mwa mwanamke aliyevalia suti nyeusi ya kuogelea |
|
akiwa kwenye dimbwi. |
|
sentences: |
|
- >- |
|
Mtoto akiruka mikononi mwa mwanamke aliyevalia suti ya kuogelea kwenye |
|
dimbwi. |
|
- Someone is holding oranges and walking |
|
- Mama na binti wakinunua viatu. |
|
- source_sentence: >- |
|
Mwanamume na mwanamke wachanga waliovaa mikoba wanaweka au kuondoa kitu |
|
kutoka kwenye mti mweupe wa zamani, huku watu wengine wamesimama au wameketi |
|
nyuma. |
|
sentences: |
|
- tai huruka |
|
- mwanamume na mwanamke wenye mikoba |
|
- Wanaume wawili wameketi karibu na mwanamke. |
|
pipeline_tag: sentence-similarity |
|
model-index: |
|
- name: SentenceTransformer based on BAAI/bge-small-en-v1.5 |
|
results: |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts test 256 |
|
type: sts-test-256 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.6831671531193453 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.677143022633225 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.6891948944875336 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.6892226446007472 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.6916897298195501 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.6916850273924392 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.6418376172951465 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.628581703082033 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.6916897298195501 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.6916850273924392 |
|
name: Spearman Max |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts test 128 |
|
type: sts-test-128 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.6753009254241098 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.6731049071307844 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.6906782473185179 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.6927883369656496 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.6933649652149252 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.694111832507592 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.600449101550258 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.5857671058687308 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.6933649652149252 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.694111832507592 |
|
name: Spearman Max |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts test 64 |
|
type: sts-test-64 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.6546200020168988 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.6523958945855459 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.6837289470688535 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.6796775815725002 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.6861328219241016 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.6815842202083926 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.5120576666695955 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.49141347385563683 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.6861328219241016 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.6815842202083926 |
|
name: Spearman Max |
|
--- |
|
|
|
# SentenceTransformer based on BAAI/bge-small-en-v1.5 |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) on the Mollel/swahili-n_li-triplet-swh-eng dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) <!-- at revision 5c38ec7c405ec4b44b94cc5a9bb96e735b38267a --> |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Output Dimensionality:** 384 tokens |
|
- **Similarity Function:** Cosine Similarity |
|
- **Training Dataset:** |
|
- Mollel/swahili-n_li-triplet-swh-eng |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel |
|
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
(2): Normalize() |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("sartifyllc/MultiLinguSwahili-bge-small-en-v1.5-nli-matryoshka") |
|
# Run inference |
|
sentences = [ |
|
'Mwanamume na mwanamke wachanga waliovaa mikoba wanaweka au kuondoa kitu kutoka kwenye mti mweupe wa zamani, huku watu wengine wamesimama au wameketi nyuma.', |
|
'mwanamume na mwanamke wenye mikoba', |
|
'tai huruka', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 384] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-test-256` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.6832 | |
|
| **spearman_cosine** | **0.6771** | |
|
| pearson_manhattan | 0.6892 | |
|
| spearman_manhattan | 0.6892 | |
|
| pearson_euclidean | 0.6917 | |
|
| spearman_euclidean | 0.6917 | |
|
| pearson_dot | 0.6418 | |
|
| spearman_dot | 0.6286 | |
|
| pearson_max | 0.6917 | |
|
| spearman_max | 0.6917 | |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-test-128` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.6753 | |
|
| **spearman_cosine** | **0.6731** | |
|
| pearson_manhattan | 0.6907 | |
|
| spearman_manhattan | 0.6928 | |
|
| pearson_euclidean | 0.6934 | |
|
| spearman_euclidean | 0.6941 | |
|
| pearson_dot | 0.6004 | |
|
| spearman_dot | 0.5858 | |
|
| pearson_max | 0.6934 | |
|
| spearman_max | 0.6941 | |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-test-64` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.6546 | |
|
| **spearman_cosine** | **0.6524** | |
|
| pearson_manhattan | 0.6837 | |
|
| spearman_manhattan | 0.6797 | |
|
| pearson_euclidean | 0.6861 | |
|
| spearman_euclidean | 0.6816 | |
|
| pearson_dot | 0.5121 | |
|
| spearman_dot | 0.4914 | |
|
| pearson_max | 0.6861 | |
|
| spearman_max | 0.6816 | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### Mollel/swahili-n_li-triplet-swh-eng |
|
|
|
* Dataset: Mollel/swahili-n_li-triplet-swh-eng |
|
* Size: 1,115,700 training samples |
|
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | anchor | positive | negative | |
|
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------| |
|
| type | string | string | string | |
|
| details | <ul><li>min: 7 tokens</li><li>mean: 15.18 tokens</li><li>max: 80 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 18.53 tokens</li><li>max: 52 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 17.8 tokens</li><li>max: 53 tokens</li></ul> | |
|
* Samples: |
|
| anchor | positive | negative | |
|
|:----------------------------------------------------------------------|:-----------------------------------------------|:-----------------------------------------------------------| |
|
| <code>A person on a horse jumps over a broken down airplane.</code> | <code>A person is outdoors, on a horse.</code> | <code>A person is at a diner, ordering an omelette.</code> | |
|
| <code>Mtu aliyepanda farasi anaruka juu ya ndege iliyovunjika.</code> | <code>Mtu yuko nje, juu ya farasi.</code> | <code>Mtu yuko kwenye mkahawa, akiagiza omelette.</code> | |
|
| <code>Children smiling and waving at camera</code> | <code>There are children present</code> | <code>The kids are frowning</code> | |
|
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters: |
|
```json |
|
{ |
|
"loss": "MultipleNegativesRankingLoss", |
|
"matryoshka_dims": [ |
|
256, |
|
128, |
|
64 |
|
], |
|
"matryoshka_weights": [ |
|
1, |
|
1, |
|
1 |
|
], |
|
"n_dims_per_step": -1 |
|
} |
|
``` |
|
|
|
### Evaluation Dataset |
|
|
|
#### Mollel/swahili-n_li-triplet-swh-eng |
|
|
|
* Dataset: Mollel/swahili-n_li-triplet-swh-eng |
|
* Size: 13,168 evaluation samples |
|
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | anchor | positive | negative | |
|
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------| |
|
| type | string | string | string | |
|
| details | <ul><li>min: 6 tokens</li><li>mean: 26.43 tokens</li><li>max: 94 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 13.37 tokens</li><li>max: 65 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 14.7 tokens</li><li>max: 54 tokens</li></ul> | |
|
* Samples: |
|
| anchor | positive | negative | |
|
|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------|:-------------------------------------------------------------------| |
|
| <code>Two women are embracing while holding to go packages.</code> | <code>Two woman are holding packages.</code> | <code>The men are fighting outside a deli.</code> | |
|
| <code>Wanawake wawili wanakumbatiana huku wakishikilia vifurushi vya kwenda.</code> | <code>Wanawake wawili wanashikilia vifurushi.</code> | <code>Wanaume hao wanapigana nje ya duka la vyakula vitamu.</code> | |
|
| <code>Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink.</code> | <code>Two kids in numbered jerseys wash their hands.</code> | <code>Two kids in jackets walk to school.</code> | |
|
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters: |
|
```json |
|
{ |
|
"loss": "MultipleNegativesRankingLoss", |
|
"matryoshka_dims": [ |
|
256, |
|
128, |
|
64 |
|
], |
|
"matryoshka_weights": [ |
|
1, |
|
1, |
|
1 |
|
], |
|
"n_dims_per_step": -1 |
|
} |
|
``` |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `per_device_train_batch_size`: 64 |
|
- `per_device_eval_batch_size`: 64 |
|
- `learning_rate`: 2e-05 |
|
- `num_train_epochs`: 1 |
|
- `warmup_ratio`: 0.1 |
|
- `bf16`: True |
|
- `batch_sampler`: no_duplicates |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 64 |
|
- `per_device_eval_batch_size`: 64 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 1 |
|
- `eval_accumulation_steps`: None |
|
- `learning_rate`: 2e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1.0 |
|
- `num_train_epochs`: 1 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: linear |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.1 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: True |
|
- `fp16`: False |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: None |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: False |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: False |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_sampler`: no_duplicates |
|
- `multi_dataset_batch_sampler`: proportional |
|
|
|
</details> |
|
|
|
### Training Logs |
|
| Epoch | Step | Training Loss | sts-test-128_spearman_cosine | sts-test-256_spearman_cosine | sts-test-64_spearman_cosine | |
|
|:------:|:----:|:-------------:|:----------------------------:|:----------------------------:|:---------------------------:| |
|
| 0.0115 | 100 | 9.6847 | - | - | - | |
|
| 0.0229 | 200 | 8.5336 | - | - | - | |
|
| 0.0344 | 300 | 7.768 | - | - | - | |
|
| 0.0459 | 400 | 7.2049 | - | - | - | |
|
| 0.0574 | 500 | 6.9425 | - | - | - | |
|
| 0.0688 | 600 | 7.029 | - | - | - | |
|
| 0.0803 | 700 | 6.259 | - | - | - | |
|
| 0.0918 | 800 | 6.0939 | - | - | - | |
|
| 0.1032 | 900 | 5.991 | - | - | - | |
|
| 0.1147 | 1000 | 5.39 | - | - | - | |
|
| 0.1262 | 1100 | 5.3214 | - | - | - | |
|
| 0.1377 | 1200 | 5.1469 | - | - | - | |
|
| 0.1491 | 1300 | 4.901 | - | - | - | |
|
| 0.1606 | 1400 | 5.2725 | - | - | - | |
|
| 0.1721 | 1500 | 5.077 | - | - | - | |
|
| 0.1835 | 1600 | 4.8006 | - | - | - | |
|
| 0.1950 | 1700 | 4.5318 | - | - | - | |
|
| 0.2065 | 1800 | 4.48 | - | - | - | |
|
| 0.2180 | 1900 | 4.5752 | - | - | - | |
|
| 0.2294 | 2000 | 4.427 | - | - | - | |
|
| 0.2409 | 2100 | 4.4021 | - | - | - | |
|
| 0.2524 | 2200 | 4.5903 | - | - | - | |
|
| 0.2639 | 2300 | 4.4561 | - | - | - | |
|
| 0.2753 | 2400 | 4.372 | - | - | - | |
|
| 0.2868 | 2500 | 4.2698 | - | - | - | |
|
| 0.2983 | 2600 | 4.3954 | - | - | - | |
|
| 0.3097 | 2700 | 4.2697 | - | - | - | |
|
| 0.3212 | 2800 | 4.125 | - | - | - | |
|
| 0.3327 | 2900 | 4.3611 | - | - | - | |
|
| 0.3442 | 3000 | 4.2527 | - | - | - | |
|
| 0.3556 | 3100 | 4.1892 | - | - | - | |
|
| 0.3671 | 3200 | 4.0417 | - | - | - | |
|
| 0.3786 | 3300 | 3.9434 | - | - | - | |
|
| 0.3900 | 3400 | 3.9797 | - | - | - | |
|
| 0.4015 | 3500 | 3.9611 | - | - | - | |
|
| 0.4130 | 3600 | 4.04 | - | - | - | |
|
| 0.4245 | 3700 | 3.965 | - | - | - | |
|
| 0.4359 | 3800 | 3.778 | - | - | - | |
|
| 0.4474 | 3900 | 4.0624 | - | - | - | |
|
| 0.4589 | 4000 | 3.8972 | - | - | - | |
|
| 0.4703 | 4100 | 3.7882 | - | - | - | |
|
| 0.4818 | 4200 | 3.8048 | - | - | - | |
|
| 0.4933 | 4300 | 3.9253 | - | - | - | |
|
| 0.5048 | 4400 | 3.9832 | - | - | - | |
|
| 0.5162 | 4500 | 3.6644 | - | - | - | |
|
| 0.5277 | 4600 | 3.7353 | - | - | - | |
|
| 0.5392 | 4700 | 3.7768 | - | - | - | |
|
| 0.5506 | 4800 | 3.796 | - | - | - | |
|
| 0.5621 | 4900 | 3.875 | - | - | - | |
|
| 0.5736 | 5000 | 3.7856 | - | - | - | |
|
| 0.5851 | 5100 | 3.8898 | - | - | - | |
|
| 0.5965 | 5200 | 3.6327 | - | - | - | |
|
| 0.6080 | 5300 | 3.7727 | - | - | - | |
|
| 0.6195 | 5400 | 3.8582 | - | - | - | |
|
| 0.6310 | 5500 | 3.729 | - | - | - | |
|
| 0.6424 | 5600 | 3.7088 | - | - | - | |
|
| 0.6539 | 5700 | 3.8414 | - | - | - | |
|
| 0.6654 | 5800 | 3.7624 | - | - | - | |
|
| 0.6768 | 5900 | 3.8816 | - | - | - | |
|
| 0.6883 | 6000 | 3.7483 | - | - | - | |
|
| 0.6998 | 6100 | 3.7759 | - | - | - | |
|
| 0.7113 | 6200 | 3.6674 | - | - | - | |
|
| 0.7227 | 6300 | 3.6441 | - | - | - | |
|
| 0.7342 | 6400 | 3.7779 | - | - | - | |
|
| 0.7457 | 6500 | 3.6691 | - | - | - | |
|
| 0.7571 | 6600 | 3.7636 | - | - | - | |
|
| 0.7686 | 6700 | 3.7424 | - | - | - | |
|
| 0.7801 | 6800 | 3.4943 | - | - | - | |
|
| 0.7916 | 6900 | 3.5399 | - | - | - | |
|
| 0.8030 | 7000 | 3.3658 | - | - | - | |
|
| 0.8145 | 7100 | 3.2856 | - | - | - | |
|
| 0.8260 | 7200 | 3.3702 | - | - | - | |
|
| 0.8374 | 7300 | 3.3121 | - | - | - | |
|
| 0.8489 | 7400 | 3.2322 | - | - | - | |
|
| 0.8604 | 7500 | 3.1577 | - | - | - | |
|
| 0.8719 | 7600 | 3.1873 | - | - | - | |
|
| 0.8833 | 7700 | 3.1492 | - | - | - | |
|
| 0.8948 | 7800 | 3.2035 | - | - | - | |
|
| 0.9063 | 7900 | 3.1607 | - | - | - | |
|
| 0.9177 | 8000 | 3.1557 | - | - | - | |
|
| 0.9292 | 8100 | 3.0915 | - | - | - | |
|
| 0.9407 | 8200 | 3.1335 | - | - | - | |
|
| 0.9522 | 8300 | 3.14 | - | - | - | |
|
| 0.9636 | 8400 | 3.1422 | - | - | - | |
|
| 0.9751 | 8500 | 3.1923 | - | - | - | |
|
| 0.9866 | 8600 | 3.1085 | - | - | - | |
|
| 0.9980 | 8700 | 3.089 | - | - | - | |
|
| 1.0 | 8717 | - | 0.6731 | 0.6771 | 0.6524 | |
|
|
|
|
|
### Framework Versions |
|
- Python: 3.11.9 |
|
- Sentence Transformers: 3.0.1 |
|
- Transformers: 4.40.1 |
|
- PyTorch: 2.3.0+cu121 |
|
- Accelerate: 0.29.3 |
|
- Datasets: 2.19.0 |
|
- Tokenizers: 0.19.1 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
#### MatryoshkaLoss |
|
```bibtex |
|
@misc{kusupati2024matryoshka, |
|
title={Matryoshka Representation Learning}, |
|
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi}, |
|
year={2024}, |
|
eprint={2205.13147}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.LG} |
|
} |
|
``` |
|
|
|
#### MultipleNegativesRankingLoss |
|
```bibtex |
|
@misc{henderson2017efficient, |
|
title={Efficient Natural Language Response Suggestion for Smart Reply}, |
|
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, |
|
year={2017}, |
|
eprint={1705.00652}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |