metadata
language: []
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:1115700
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: UBC-NLP/serengeti-E250
datasets: []
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
widget:
- source_sentence: Ndege mwenye mdomo mrefu katikati ya ndege.
sentences:
- Panya anayekimbia juu ya gurudumu.
- Mtu anashindana katika mashindano ya mbio.
- Ndege anayeruka.
- source_sentence: >-
Msichana mchanga mwenye nywele nyeusi anakabili kamera na kushikilia mfuko
wa karatasi wakati amevaa shati la machungwa na mabawa ya kipepeo yenye
rangi nyingi.
sentences:
- Mwanamke mzee anakataa kupigwa picha.
- mtu akila na mvulana mdogo kwenye kijia cha jiji
- Msichana mchanga anakabili kamera.
- source_sentence: >-
Wanawake na watoto wameketi nje katika kivuli wakati kikundi cha watoto
wadogo wameketi ndani katika kivuli.
sentences:
- Mwanamke na watoto na kukaa chini.
- Mwanamke huyo anakimbia.
- Watu wanasafiri kwa baiskeli.
- source_sentence: >-
Mtoto mdogo anaruka mikononi mwa mwanamke aliyevalia suti nyeusi ya
kuogelea akiwa kwenye dimbwi.
sentences:
- >-
Mtoto akiruka mikononi mwa mwanamke aliyevalia suti ya kuogelea kwenye
dimbwi.
- Someone is holding oranges and walking
- Mama na binti wakinunua viatu.
- source_sentence: >-
Mwanamume na mwanamke wachanga waliovaa mikoba wanaweka au kuondoa kitu
kutoka kwenye mti mweupe wa zamani, huku watu wengine wamesimama au
wameketi nyuma.
sentences:
- tai huruka
- mwanamume na mwanamke wenye mikoba
- Wanaume wawili wameketi karibu na mwanamke.
pipeline_tag: sentence-similarity
model-index:
- name: SentenceTransformer based on UBC-NLP/serengeti-E250
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test 768
type: sts-test-768
metrics:
- type: pearson_cosine
value: 0.7084016023985643
name: Pearson Cosine
- type: spearman_cosine
value: 0.7080643276583263
name: Spearman Cosine
- type: pearson_manhattan
value: 0.7163851544290831
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.7066259909380899
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.716171309296757
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.7064427148038006
name: Spearman Euclidean
- type: pearson_dot
value: 0.38463559218643695
name: Pearson Dot
- type: spearman_dot
value: 0.3566836293112297
name: Spearman Dot
- type: pearson_max
value: 0.7163851544290831
name: Pearson Max
- type: spearman_max
value: 0.7080643276583263
name: Spearman Max
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test 512
type: sts-test-512
metrics:
- type: pearson_cosine
value: 0.7059523092716506
name: Pearson Cosine
- type: spearman_cosine
value: 0.7046582726338858
name: Spearman Cosine
- type: pearson_manhattan
value: 0.714245009590492
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.7048777976859945
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.7150194670982656
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.7055458365374757
name: Spearman Euclidean
- type: pearson_dot
value: 0.3855295554891442
name: Pearson Dot
- type: spearman_dot
value: 0.3585966097040326
name: Spearman Dot
- type: pearson_max
value: 0.7150194670982656
name: Pearson Max
- type: spearman_max
value: 0.7055458365374757
name: Spearman Max
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test 256
type: sts-test-256
metrics:
- type: pearson_cosine
value: 0.7069259070512649
name: Pearson Cosine
- type: spearman_cosine
value: 0.7072103115498357
name: Spearman Cosine
- type: pearson_manhattan
value: 0.7151518946293685
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.7050845216566457
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.7154956682724514
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.70486417475867
name: Spearman Euclidean
- type: pearson_dot
value: 0.37291132473389677
name: Pearson Dot
- type: spearman_dot
value: 0.3480769113927452
name: Spearman Dot
- type: pearson_max
value: 0.7154956682724514
name: Pearson Max
- type: spearman_max
value: 0.7072103115498357
name: Spearman Max
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test 128
type: sts-test-128
metrics:
- type: pearson_cosine
value: 0.7022542784280805
name: Pearson Cosine
- type: spearman_cosine
value: 0.7062378358777478
name: Spearman Cosine
- type: pearson_manhattan
value: 0.711575484251127
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.701312903814612
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.7125043324593673
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.7011154675785318
name: Spearman Euclidean
- type: pearson_dot
value: 0.34394993785114003
name: Pearson Dot
- type: spearman_dot
value: 0.31686351995727197
name: Spearman Dot
- type: pearson_max
value: 0.7125043324593673
name: Pearson Max
- type: spearman_max
value: 0.7062378358777478
name: Spearman Max
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test 64
type: sts-test-64
metrics:
- type: pearson_cosine
value: 0.6950172826546709
name: Pearson Cosine
- type: spearman_cosine
value: 0.6993973161633343
name: Spearman Cosine
- type: pearson_manhattan
value: 0.7059726901866531
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.6938542774412633
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.7066346687971139
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.6949014564343952
name: Spearman Euclidean
- type: pearson_dot
value: 0.30982738809482646
name: Pearson Dot
- type: spearman_dot
value: 0.2855406388879541
name: Spearman Dot
- type: pearson_max
value: 0.7066346687971139
name: Pearson Max
- type: spearman_max
value: 0.6993973161633343
name: Spearman Max
SentenceTransformer based on UBC-NLP/serengeti-E250
This is a sentence-transformers model finetuned from UBC-NLP/serengeti-E250 on the Mollel/swahili-n_li-triplet-swh-eng dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: UBC-NLP/serengeti-E250
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Training Dataset:
- Mollel/swahili-n_li-triplet-swh-eng
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: ElectraModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("sartifyllc/MultiLinguSwahili-MultiLinguSwahili-serengeti-E250-nli-matryoshka-nli-matryoshka")
sentences = [
'Mwanamume na mwanamke wachanga waliovaa mikoba wanaweka au kuondoa kitu kutoka kwenye mti mweupe wa zamani, huku watu wengine wamesimama au wameketi nyuma.',
'mwanamume na mwanamke wenye mikoba',
'tai huruka',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Semantic Similarity
Metric |
Value |
pearson_cosine |
0.7084 |
spearman_cosine |
0.7081 |
pearson_manhattan |
0.7164 |
spearman_manhattan |
0.7066 |
pearson_euclidean |
0.7162 |
spearman_euclidean |
0.7064 |
pearson_dot |
0.3846 |
spearman_dot |
0.3567 |
pearson_max |
0.7164 |
spearman_max |
0.7081 |
Semantic Similarity
Metric |
Value |
pearson_cosine |
0.706 |
spearman_cosine |
0.7047 |
pearson_manhattan |
0.7142 |
spearman_manhattan |
0.7049 |
pearson_euclidean |
0.715 |
spearman_euclidean |
0.7055 |
pearson_dot |
0.3855 |
spearman_dot |
0.3586 |
pearson_max |
0.715 |
spearman_max |
0.7055 |
Semantic Similarity
Metric |
Value |
pearson_cosine |
0.7069 |
spearman_cosine |
0.7072 |
pearson_manhattan |
0.7152 |
spearman_manhattan |
0.7051 |
pearson_euclidean |
0.7155 |
spearman_euclidean |
0.7049 |
pearson_dot |
0.3729 |
spearman_dot |
0.3481 |
pearson_max |
0.7155 |
spearman_max |
0.7072 |
Semantic Similarity
Metric |
Value |
pearson_cosine |
0.7023 |
spearman_cosine |
0.7062 |
pearson_manhattan |
0.7116 |
spearman_manhattan |
0.7013 |
pearson_euclidean |
0.7125 |
spearman_euclidean |
0.7011 |
pearson_dot |
0.3439 |
spearman_dot |
0.3169 |
pearson_max |
0.7125 |
spearman_max |
0.7062 |
Semantic Similarity
Metric |
Value |
pearson_cosine |
0.695 |
spearman_cosine |
0.6994 |
pearson_manhattan |
0.706 |
spearman_manhattan |
0.6939 |
pearson_euclidean |
0.7066 |
spearman_euclidean |
0.6949 |
pearson_dot |
0.3098 |
spearman_dot |
0.2855 |
pearson_max |
0.7066 |
spearman_max |
0.6994 |
Training Details
Training Dataset
Mollel/swahili-n_li-triplet-swh-eng
- Dataset: Mollel/swahili-n_li-triplet-swh-eng
- Size: 1,115,700 training samples
- Columns:
anchor
, positive
, and negative
- Approximate statistics based on the first 1000 samples:
|
anchor |
positive |
negative |
type |
string |
string |
string |
details |
- min: 6 tokens
- mean: 11.27 tokens
- max: 48 tokens
|
- min: 5 tokens
- mean: 13.0 tokens
- max: 29 tokens
|
- min: 4 tokens
- mean: 12.56 tokens
- max: 29 tokens
|
- Samples:
anchor |
positive |
negative |
A person on a horse jumps over a broken down airplane. |
A person is outdoors, on a horse. |
A person is at a diner, ordering an omelette. |
Mtu aliyepanda farasi anaruka juu ya ndege iliyovunjika. |
Mtu yuko nje, juu ya farasi. |
Mtu yuko kwenye mkahawa, akiagiza omelette. |
Children smiling and waving at camera |
There are children present |
The kids are frowning |
- Loss:
MatryoshkaLoss
with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Evaluation Dataset
Mollel/swahili-n_li-triplet-swh-eng
- Dataset: Mollel/swahili-n_li-triplet-swh-eng
- Size: 13,168 evaluation samples
- Columns:
anchor
, positive
, and negative
- Approximate statistics based on the first 1000 samples:
|
anchor |
positive |
negative |
type |
string |
string |
string |
details |
- min: 5 tokens
- mean: 18.07 tokens
- max: 53 tokens
|
- min: 4 tokens
- mean: 9.45 tokens
- max: 33 tokens
|
- min: 4 tokens
- mean: 10.27 tokens
- max: 29 tokens
|
- Samples:
anchor |
positive |
negative |
Two women are embracing while holding to go packages. |
Two woman are holding packages. |
The men are fighting outside a deli. |
Wanawake wawili wanakumbatiana huku wakishikilia vifurushi vya kwenda. |
Wanawake wawili wanashikilia vifurushi. |
Wanaume hao wanapigana nje ya duka la vyakula vitamu. |
Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink. |
Two kids in numbered jerseys wash their hands. |
Two kids in jackets walk to school. |
- Loss:
MatryoshkaLoss
with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size
: 32
per_device_eval_batch_size
: 32
learning_rate
: 2e-05
num_train_epochs
: 1
warmup_ratio
: 0.1
bf16
: True
batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: False
do_predict
: False
prediction_loss_only
: True
per_device_train_batch_size
: 32
per_device_eval_batch_size
: 32
per_gpu_train_batch_size
: None
per_gpu_eval_batch_size
: None
gradient_accumulation_steps
: 1
eval_accumulation_steps
: None
learning_rate
: 2e-05
weight_decay
: 0.0
adam_beta1
: 0.9
adam_beta2
: 0.999
adam_epsilon
: 1e-08
max_grad_norm
: 1.0
num_train_epochs
: 1
max_steps
: -1
lr_scheduler_type
: linear
lr_scheduler_kwargs
: {}
warmup_ratio
: 0.1
warmup_steps
: 0
log_level
: passive
log_level_replica
: warning
log_on_each_node
: True
logging_nan_inf_filter
: True
save_safetensors
: True
save_on_each_node
: False
save_only_model
: False
no_cuda
: False
use_cpu
: False
use_mps_device
: False
seed
: 42
data_seed
: None
jit_mode_eval
: False
use_ipex
: False
bf16
: True
fp16
: False
fp16_opt_level
: O1
half_precision_backend
: auto
bf16_full_eval
: False
fp16_full_eval
: False
tf32
: None
local_rank
: 0
ddp_backend
: None
tpu_num_cores
: None
tpu_metrics_debug
: False
debug
: []
dataloader_drop_last
: False
dataloader_num_workers
: 0
dataloader_prefetch_factor
: None
past_index
: -1
disable_tqdm
: False
remove_unused_columns
: True
label_names
: None
load_best_model_at_end
: False
ignore_data_skip
: False
fsdp
: []
fsdp_min_num_params
: 0
fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap
: None
accelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'gradient_accumulation_kwargs': None}
deepspeed
: None
label_smoothing_factor
: 0.0
optim
: adamw_torch
optim_args
: None
adafactor
: False
group_by_length
: False
length_column_name
: length
ddp_find_unused_parameters
: None
ddp_bucket_cap_mb
: None
ddp_broadcast_buffers
: False
dataloader_pin_memory
: True
dataloader_persistent_workers
: False
skip_memory_metrics
: True
use_legacy_prediction_loop
: False
push_to_hub
: False
resume_from_checkpoint
: None
hub_model_id
: None
hub_strategy
: every_save
hub_private_repo
: False
hub_always_push
: False
gradient_checkpointing
: False
gradient_checkpointing_kwargs
: None
include_inputs_for_metrics
: False
eval_do_concat_batches
: True
fp16_backend
: auto
push_to_hub_model_id
: None
push_to_hub_organization
: None
mp_parameters
:
auto_find_batch_size
: False
full_determinism
: False
torchdynamo
: None
ray_scope
: last
ddp_timeout
: 1800
torch_compile
: False
torch_compile_backend
: None
torch_compile_mode
: None
dispatch_batches
: None
split_batches
: None
include_tokens_per_second
: False
include_num_input_tokens_seen
: False
neftune_noise_alpha
: None
optim_target_modules
: None
batch_sampler
: no_duplicates
multi_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch |
Step |
Training Loss |
sts-test-128_spearman_cosine |
sts-test-256_spearman_cosine |
sts-test-512_spearman_cosine |
sts-test-64_spearman_cosine |
sts-test-768_spearman_cosine |
0.0057 |
100 |
26.7003 |
- |
- |
- |
- |
- |
0.0115 |
200 |
20.7097 |
- |
- |
- |
- |
- |
0.0172 |
300 |
17.2266 |
- |
- |
- |
- |
- |
0.0229 |
400 |
15.7511 |
- |
- |
- |
- |
- |
0.0287 |
500 |
14.5329 |
- |
- |
- |
- |
- |
0.0344 |
600 |
12.6534 |
- |
- |
- |
- |
- |
0.0402 |
700 |
10.6758 |
- |
- |
- |
- |
- |
0.0459 |
800 |
9.421 |
- |
- |
- |
- |
- |
0.0516 |
900 |
9.5664 |
- |
- |
- |
- |
- |
0.0574 |
1000 |
8.5166 |
- |
- |
- |
- |
- |
0.0631 |
1100 |
8.657 |
- |
- |
- |
- |
- |
0.0688 |
1200 |
8.5473 |
- |
- |
- |
- |
- |
0.0746 |
1300 |
8.3018 |
- |
- |
- |
- |
- |
0.0803 |
1400 |
8.4488 |
- |
- |
- |
- |
- |
0.0860 |
1500 |
7.1796 |
- |
- |
- |
- |
- |
0.0918 |
1600 |
6.6136 |
- |
- |
- |
- |
- |
0.0975 |
1700 |
6.2638 |
- |
- |
- |
- |
- |
0.1033 |
1800 |
6.6955 |
- |
- |
- |
- |
- |
0.1090 |
1900 |
7.3585 |
- |
- |
- |
- |
- |
0.1147 |
2000 |
6.9043 |
- |
- |
- |
- |
- |
0.1205 |
2100 |
6.677 |
- |
- |
- |
- |
- |
0.1262 |
2200 |
6.3914 |
- |
- |
- |
- |
- |
0.1319 |
2300 |
6.0045 |
- |
- |
- |
- |
- |
0.1377 |
2400 |
5.8048 |
- |
- |
- |
- |
- |
0.1434 |
2500 |
5.6898 |
- |
- |
- |
- |
- |
0.1491 |
2600 |
5.229 |
- |
- |
- |
- |
- |
0.1549 |
2700 |
5.2407 |
- |
- |
- |
- |
- |
0.1606 |
2800 |
5.7074 |
- |
- |
- |
- |
- |
0.1664 |
2900 |
6.2917 |
- |
- |
- |
- |
- |
0.1721 |
3000 |
6.5651 |
- |
- |
- |
- |
- |
0.1778 |
3100 |
6.7751 |
- |
- |
- |
- |
- |
0.1836 |
3200 |
6.195 |
- |
- |
- |
- |
- |
0.1893 |
3300 |
5.4697 |
- |
- |
- |
- |
- |
0.1950 |
3400 |
5.1362 |
- |
- |
- |
- |
- |
0.2008 |
3500 |
5.581 |
- |
- |
- |
- |
- |
0.2065 |
3600 |
5.4309 |
- |
- |
- |
- |
- |
0.2122 |
3700 |
5.6688 |
- |
- |
- |
- |
- |
0.2180 |
3800 |
5.6923 |
- |
- |
- |
- |
- |
0.2237 |
3900 |
5.8598 |
- |
- |
- |
- |
- |
0.2294 |
4000 |
5.3498 |
- |
- |
- |
- |
- |
0.2352 |
4100 |
5.3797 |
- |
- |
- |
- |
- |
0.2409 |
4200 |
5.0389 |
- |
- |
- |
- |
- |
0.2467 |
4300 |
5.6622 |
- |
- |
- |
- |
- |
0.2524 |
4400 |
5.6249 |
- |
- |
- |
- |
- |
0.2581 |
4500 |
5.6927 |
- |
- |
- |
- |
- |
0.2639 |
4600 |
5.3612 |
- |
- |
- |
- |
- |
0.2696 |
4700 |
5.2751 |
- |
- |
- |
- |
- |
0.2753 |
4800 |
5.4224 |
- |
- |
- |
- |
- |
0.2811 |
4900 |
5.0338 |
- |
- |
- |
- |
- |
0.2868 |
5000 |
4.9813 |
- |
- |
- |
- |
- |
0.2925 |
5100 |
4.8533 |
- |
- |
- |
- |
- |
0.2983 |
5200 |
5.4137 |
- |
- |
- |
- |
- |
0.3040 |
5300 |
5.4063 |
- |
- |
- |
- |
- |
0.3098 |
5400 |
5.3107 |
- |
- |
- |
- |
- |
0.3155 |
5500 |
5.0907 |
- |
- |
- |
- |
- |
0.3212 |
5600 |
4.8644 |
- |
- |
- |
- |
- |
0.3270 |
5700 |
4.7926 |
- |
- |
- |
- |
- |
0.3327 |
5800 |
5.0268 |
- |
- |
- |
- |
- |
0.3384 |
5900 |
5.3029 |
- |
- |
- |
- |
- |
0.3442 |
6000 |
5.1246 |
- |
- |
- |
- |
- |
0.3499 |
6100 |
5.1152 |
- |
- |
- |
- |
- |
0.3556 |
6200 |
5.4265 |
- |
- |
- |
- |
- |
0.3614 |
6300 |
4.7079 |
- |
- |
- |
- |
- |
0.3671 |
6400 |
4.6368 |
- |
- |
- |
- |
- |
0.3729 |
6500 |
4.662 |
- |
- |
- |
- |
- |
0.3786 |
6600 |
5.3695 |
- |
- |
- |
- |
- |
0.3843 |
6700 |
4.6974 |
- |
- |
- |
- |
- |
0.3901 |
6800 |
4.6584 |
- |
- |
- |
- |
- |
0.3958 |
6900 |
4.7413 |
- |
- |
- |
- |
- |
0.4015 |
7000 |
4.6604 |
- |
- |
- |
- |
- |
0.4073 |
7100 |
5.2476 |
- |
- |
- |
- |
- |
0.4130 |
7200 |
4.9966 |
- |
- |
- |
- |
- |
0.4187 |
7300 |
4.656 |
- |
- |
- |
- |
- |
0.4245 |
7400 |
4.5711 |
- |
- |
- |
- |
- |
0.4302 |
7500 |
5.0256 |
- |
- |
- |
- |
- |
0.4360 |
7600 |
4.3856 |
- |
- |
- |
- |
- |
0.4417 |
7700 |
4.2548 |
- |
- |
- |
- |
- |
0.4474 |
7800 |
4.8584 |
- |
- |
- |
- |
- |
0.4532 |
7900 |
4.8563 |
- |
- |
- |
- |
- |
0.4589 |
8000 |
4.5101 |
- |
- |
- |
- |
- |
0.4646 |
8100 |
4.4688 |
- |
- |
- |
- |
- |
0.4704 |
8200 |
4.7076 |
- |
- |
- |
- |
- |
0.4761 |
8300 |
4.3268 |
- |
- |
- |
- |
- |
0.4818 |
8400 |
4.6622 |
- |
- |
- |
- |
- |
0.4876 |
8500 |
4.4808 |
- |
- |
- |
- |
- |
0.4933 |
8600 |
4.676 |
- |
- |
- |
- |
- |
0.4991 |
8700 |
5.0348 |
- |
- |
- |
- |
- |
0.5048 |
8800 |
4.5497 |
- |
- |
- |
- |
- |
0.5105 |
8900 |
4.7428 |
- |
- |
- |
- |
- |
0.5163 |
9000 |
4.4418 |
- |
- |
- |
- |
- |
0.5220 |
9100 |
4.4946 |
- |
- |
- |
- |
- |
0.5277 |
9200 |
4.5249 |
- |
- |
- |
- |
- |
0.5335 |
9300 |
4.2413 |
- |
- |
- |
- |
- |
0.5392 |
9400 |
4.4799 |
- |
- |
- |
- |
- |
0.5449 |
9500 |
4.6807 |
- |
- |
- |
- |
- |
0.5507 |
9600 |
4.5901 |
- |
- |
- |
- |
- |
0.5564 |
9700 |
4.7266 |
- |
- |
- |
- |
- |
0.5622 |
9800 |
4.692 |
- |
- |
- |
- |
- |
0.5679 |
9900 |
4.8651 |
- |
- |
- |
- |
- |
0.5736 |
10000 |
4.7746 |
- |
- |
- |
- |
- |
0.5794 |
10100 |
4.68 |
- |
- |
- |
- |
- |
0.5851 |
10200 |
4.7697 |
- |
- |
- |
- |
- |
0.5908 |
10300 |
4.8848 |
- |
- |
- |
- |
- |
0.5966 |
10400 |
4.4004 |
- |
- |
- |
- |
- |
0.6023 |
10500 |
4.2979 |
- |
- |
- |
- |
- |
0.6080 |
10600 |
4.7266 |
- |
- |
- |
- |
- |
0.6138 |
10700 |
4.8605 |
- |
- |
- |
- |
- |
0.6195 |
10800 |
4.7436 |
- |
- |
- |
- |
- |
0.6253 |
10900 |
4.6239 |
- |
- |
- |
- |
- |
0.6310 |
11000 |
4.394 |
- |
- |
- |
- |
- |
0.6367 |
11100 |
4.8081 |
- |
- |
- |
- |
- |
0.6425 |
11200 |
4.2329 |
- |
- |
- |
- |
- |
0.6482 |
11300 |
4.873 |
- |
- |
- |
- |
- |
0.6539 |
11400 |
4.5557 |
- |
- |
- |
- |
- |
0.6597 |
11500 |
4.7918 |
- |
- |
- |
- |
- |
0.6654 |
11600 |
4.1607 |
- |
- |
- |
- |
- |
0.6711 |
11700 |
4.8744 |
- |
- |
- |
- |
- |
0.6769 |
11800 |
5.0072 |
- |
- |
- |
- |
- |
0.6826 |
11900 |
4.3532 |
- |
- |
- |
- |
- |
0.6883 |
12000 |
4.3319 |
- |
- |
- |
- |
- |
0.6941 |
12100 |
4.6885 |
- |
- |
- |
- |
- |
0.6998 |
12200 |
4.6682 |
- |
- |
- |
- |
- |
0.7056 |
12300 |
4.4258 |
- |
- |
- |
- |
- |
0.7113 |
12400 |
4.6136 |
- |
- |
- |
- |
- |
0.7170 |
12500 |
4.3594 |
- |
- |
- |
- |
- |
0.7228 |
12600 |
4.0627 |
- |
- |
- |
- |
- |
0.7285 |
12700 |
4.5244 |
- |
- |
- |
- |
- |
0.7342 |
12800 |
4.504 |
- |
- |
- |
- |
- |
0.7400 |
12900 |
4.4694 |
- |
- |
- |
- |
- |
0.7457 |
13000 |
4.4804 |
- |
- |
- |
- |
- |
0.7514 |
13100 |
4.0588 |
- |
- |
- |
- |
- |
0.7572 |
13200 |
4.8016 |
- |
- |
- |
- |
- |
0.7629 |
13300 |
4.2971 |
- |
- |
- |
- |
- |
0.7687 |
13400 |
4.1326 |
- |
- |
- |
- |
- |
0.7744 |
13500 |
3.9763 |
- |
- |
- |
- |
- |
0.7801 |
13600 |
3.7716 |
- |
- |
- |
- |
- |
0.7859 |
13700 |
3.8448 |
- |
- |
- |
- |
- |
0.7916 |
13800 |
3.6779 |
- |
- |
- |
- |
- |
0.7973 |
13900 |
3.5938 |
- |
- |
- |
- |
- |
0.8031 |
14000 |
3.3981 |
- |
- |
- |
- |
- |
0.8088 |
14100 |
3.4151 |
- |
- |
- |
- |
- |
0.8145 |
14200 |
3.2498 |
- |
- |
- |
- |
- |
0.8203 |
14300 |
3.4909 |
- |
- |
- |
- |
- |
0.8260 |
14400 |
3.4098 |
- |
- |
- |
- |
- |
0.8318 |
14500 |
3.4448 |
- |
- |
- |
- |
- |
0.8375 |
14600 |
3.2868 |
- |
- |
- |
- |
- |
0.8432 |
14700 |
3.2196 |
- |
- |
- |
- |
- |
0.8490 |
14800 |
3.0852 |
- |
- |
- |
- |
- |
0.8547 |
14900 |
3.2341 |
- |
- |
- |
- |
- |
0.8604 |
15000 |
3.164 |
- |
- |
- |
- |
- |
0.8662 |
15100 |
3.0919 |
- |
- |
- |
- |
- |
0.8719 |
15200 |
3.176 |
- |
- |
- |
- |
- |
0.8776 |
15300 |
3.1361 |
- |
- |
- |
- |
- |
0.8834 |
15400 |
3.0683 |
- |
- |
- |
- |
- |
0.8891 |
15500 |
3.0275 |
- |
- |
- |
- |
- |
0.8949 |
15600 |
3.0763 |
- |
- |
- |
- |
- |
0.9006 |
15700 |
3.1828 |
- |
- |
- |
- |
- |
0.9063 |
15800 |
3.0053 |
- |
- |
- |
- |
- |
0.9121 |
15900 |
2.9696 |
- |
- |
- |
- |
- |
0.9178 |
16000 |
2.8919 |
- |
- |
- |
- |
- |
0.9235 |
16100 |
2.9922 |
- |
- |
- |
- |
- |
0.9293 |
16200 |
2.9063 |
- |
- |
- |
- |
- |
0.9350 |
16300 |
3.0633 |
- |
- |
- |
- |
- |
0.9407 |
16400 |
3.1782 |
- |
- |
- |
- |
- |
0.9465 |
16500 |
2.9206 |
- |
- |
- |
- |
- |
0.9522 |
16600 |
2.8785 |
- |
- |
- |
- |
- |
0.9580 |
16700 |
2.9934 |
- |
- |
- |
- |
- |
0.9637 |
16800 |
3.0125 |
- |
- |
- |
- |
- |
0.9694 |
16900 |
2.9338 |
- |
- |
- |
- |
- |
0.9752 |
17000 |
2.9931 |
- |
- |
- |
- |
- |
0.9809 |
17100 |
2.956 |
- |
- |
- |
- |
- |
0.9866 |
17200 |
2.8415 |
- |
- |
- |
- |
- |
0.9924 |
17300 |
3.0072 |
- |
- |
- |
- |
- |
0.9981 |
17400 |
2.9046 |
- |
- |
- |
- |
- |
1.0 |
17433 |
- |
0.7062 |
0.7072 |
0.7047 |
0.6994 |
0.7081 |
Framework Versions
- Python: 3.11.9
- Sentence Transformers: 3.0.1
- Transformers: 4.40.1
- PyTorch: 2.3.0+cu121
- Accelerate: 0.29.3
- Datasets: 2.19.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}