sauc-abadal-lloret's picture
Training complete
cbc93e0 verified
metadata
library_name: transformers
license: apache-2.0
base_model: distilbert-base-uncased
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: distilbert-base-uncased-ft-imdb-sentiment-classifier
    results: []

distilbert-base-uncased-ft-imdb-sentiment-classifier

This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2956
  • Precision: 0.9191
  • Recall: 0.8852
  • F1: 0.9019
  • Accuracy: 0.906

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.3177 1.0 313 0.2525 0.8918 0.9119 0.9017 0.903
0.1762 2.0 626 0.2694 0.9137 0.8893 0.9013 0.905
0.113 3.0 939 0.2956 0.9191 0.8852 0.9019 0.906

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1