|
--- |
|
tags: |
|
- merge |
|
- mergekit |
|
- cognitivecomputations/dolphin-2.9-llama3-8b |
|
- NousResearch/Hermes-2-Theta-Llama-3-8B |
|
base_model: |
|
- cognitivecomputations/dolphin-2.9-llama3-8b |
|
- NousResearch/Hermes-2-Theta-Llama-3-8B |
|
license: apache-2.0 |
|
--- |
|
|
|
![](https://raw.githubusercontent.com/saucam/models/main/proteus.png) |
|
|
|
# 💧 Proteus-8B |
|
Proteus-8B is a merge of the following models using [Mergekit](https://github.com/arcee-ai/mergekit): |
|
* [cognitivecomputations/dolphin-2.9-llama3-8b](https://huggingface.co/cognitivecomputations/dolphin-2.9-llama3-8b) |
|
* [NousResearch/Hermes-2-Theta-Llama-3-8B](https://huggingface.co/NousResearch/Hermes-2-Theta-Llama-3-8B) |
|
|
|
## 🧩 Configuration |
|
|
|
```yamltokenizer_source: union |
|
tokenizer_source: union |
|
embed_slerp: true |
|
name: Proteus-8B |
|
models: |
|
- model: cognitivecomputations/dolphin-2.9-llama3-8b |
|
parameters: |
|
density: 0.5 |
|
weight: 0.4 |
|
- model: NousResearch/Hermes-2-Theta-Llama-3-8B |
|
parameters: |
|
density: 0.5 |
|
weight: 0.6 |
|
merge_method: dare_ties |
|
base_model: NousResearch/Hermes-2-Theta-Llama-3-8B |
|
parameters: |
|
int8_mask: true |
|
dtype: bfloat16 |
|
``` |
|
|
|
## Eval Results |
|
|
|
|
|
| Benchmark | Average | arc | gsm8k | hellaswag | mmlu | truthfulqa | winogrande | |
|
|-----------|---------:|----:|----:|---:|---------:|--------:|------:| |
|
| openllm | 70.67 | 63.48 | 78.77 | 82.94 | 64.71 | 56.71 | 77.43 | |
|
|
|
Detailed Results: https://github.com/saucam/model_evals/blob/main/saucam/Proteus-8B/README.md |
|
|
|
## 💻 Usage |
|
|
|
```python |
|
!pip install -qU transformers accelerate |
|
|
|
from transformers import AutoTokenizer |
|
import transformers |
|
import torch |
|
|
|
model = "saucam/Proteus-8B" |
|
messages = [{"role": "user", "content": "What is a large language model?"}] |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model) |
|
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) |
|
pipeline = transformers.pipeline( |
|
"text-generation", |
|
model=model, |
|
torch_dtype=torch.float16, |
|
device_map="auto", |
|
) |
|
|
|
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) |
|
print(outputs[0]["generated_text"]) |
|
``` |