FLUX.1-merged
This repository provides the merged params for black-forest-labs/FLUX.1-dev
and black-forest-labs/FLUX.1-schnell
. Please be aware of the licenses of both
the models before using the params commercially.
Dev (50 steps) | Dev (4 steps) | Dev + Schnell (4 steps) |
---|---|---|
Sub-memory-efficient merging code
from diffusers import FluxTransformer2DModel
from huggingface_hub import snapshot_download
from accelerate import init_empty_weights
from diffusers.models.model_loading_utils import load_model_dict_into_meta
import safetensors.torch
import glob
import torch
with init_empty_weights():
config = FluxTransformer2DModel.load_config("black-forest-labs/FLUX.1-dev", subfolder="transformer")
model = FluxTransformer2DModel.from_config(config)
dev_ckpt = snapshot_download(repo_id="black-forest-labs/FLUX.1-dev", allow_patterns="transformer/*")
schnell_ckpt = snapshot_download(repo_id="black-forest-labs/FLUX.1-schnell", allow_patterns="transformer/*")
dev_shards = sorted(glob.glob(f"{dev_ckpt}/transformer/*.safetensors"))
schnell_shards = sorted(glob.glob(f"{schnell_ckpt}/transformer/*.safetensors"))
merged_state_dict = {}
guidance_state_dict = {}
for i in range(len((dev_shards))):
state_dict_dev_temp = safetensors.torch.load_file(dev_shards[i])
state_dict_schnell_temp = safetensors.torch.load_file(schnell_shards[i])
keys = list(state_dict_dev_temp.keys())
for k in keys:
if "guidance" not in k:
merged_state_dict[k] = (state_dict_dev_temp.pop(k) + state_dict_schnell_temp.pop(k)) / 2
else:
guidance_state_dict[k] = state_dict_dev_temp.pop(k)
if len(state_dict_dev_temp) > 0:
raise ValueError(f"There should not be any residue but got: {list(state_dict_dev_temp.keys())}.")
if len(state_dict_schnell_temp) > 0:
raise ValueError(f"There should not be any residue but got: {list(state_dict_dev_temp.keys())}.")
merged_state_dict.update(guidance_state_dict)
load_model_dict_into_meta(model, merged_state_dict)
model.to(torch.bfloat16).save_pretrained("merged-flux")
Inference code
from diffusers import FluxPipeline
import torch
pipeline = FluxPipeline.from_pretrained(
"sayakpaul/FLUX.1-merged", torch_dtype=torch.bfloat16
).to("cuda")
image = pipeline(
prompt="a tiny astronaut hatching from an egg on the moon",
guidance_scale=3.5,
num_inference_steps=4,
height=880,
width=1184,
max_sequence_length=512,
generator=torch.manual_seed(0),
).images[0]
image.save("merged_flux.png")
Documentation
- Downloads last month
- 846
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for sayakpaul/FLUX.1-merged
Merge model
this model