Whitebox Cartoonizer
Whitebox Cartoonizer [1] model in the SavedModel
format. The model was exported to the SavedModel format using
this notebook. Original model
repository can be found here.
Inference code
import cv2
import numpy as np
import requests
import tensorflow as tf
from huggingface_hub import snapshot_download
from PIL import Image
def resize_crop(image):
h, w, c = np.shape(image)
if min(h, w) > 720:
if h > w:
h, w = int(720 * h / w), 720
else:
h, w = 720, int(720 * w / h)
image = cv2.resize(image, (w, h), interpolation=cv2.INTER_AREA)
h, w = (h // 8) * 8, (w // 8) * 8
image = image[:h, :w, :]
return image
def download_image(url):
image = Image.open(requests.get(url, stream=True).raw)
image = image.convert("RGB")
image = np.array(image)
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
return image
def preprocess_image(image):
image = resize_crop(image)
image = image.astype(np.float32) / 127.5 - 1
image = np.expand_dims(image, axis=0)
image = tf.constant(image)
return image
# Load the model and extract concrete function.
model_path = snapshot_download("sayakpaul/whitebox-cartoonizer")
loaded_model = tf.saved_model.load(model_path)
concrete_func = loaded_model.signatures["serving_default"]
# Download and preprocess image.
image_url = "https://huggingface.co/spaces/sayakpaul/cartoonizer-demo-onnx/resolve/main/mountain.jpeg"
image = download_image(image_url)
preprocessed_image = preprocess_image(image)
# Run inference.
result = concrete_func(preprocessed_image)["final_output:0"]
# Post-process the result and serialize it.
output = (result[0].numpy() + 1.0) * 127.5
output = np.clip(output, 0, 255).astype(np.uint8)
output = cv2.cvtColor(output, cv2.COLOR_BGR2RGB)
output_image = Image.fromarray(output)
output_image.save("result.png")
References
[1] Learning to Cartoonize Using White-box Cartoon Representations; Xinrui Wang and Jinze Yu; CVPR 2020.
- Downloads last month
- 68
Inference API (serverless) does not yet support tf-keras models for this pipeline type.