|
--- |
|
library_name: stable-baselines3 |
|
tags: |
|
- CartPole-v1 |
|
- deep-reinforcement-learning |
|
- reinforcement-learning |
|
- stable-baselines3 |
|
model-index: |
|
- name: PPO |
|
results: |
|
- metrics: |
|
- type: mean_reward |
|
value: 500.00 +/- 0.00 |
|
name: mean_reward |
|
task: |
|
type: reinforcement-learning |
|
name: reinforcement-learning |
|
dataset: |
|
name: CartPole-v1 |
|
type: CartPole-v1 |
|
--- |
|
|
|
# **PPO** Agent playing **CartPole-v1** |
|
This is a trained model of a **PPO** agent playing **CartPole-v1** |
|
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) |
|
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo) |
|
|
|
## Usage (with SB3 RL Zoo) |
|
``` |
|
# Download model and save it into the logs/ folder |
|
python -m utils.load_from_hub --algo ppo --env CartPole-v1 -orga sb3 -f logs/ |
|
python enjoy --algo ppo --env CartPole-v1 -f logs/ |
|
``` |
|
|
|
## Training (with the RL Zoo) |
|
``` |
|
python train.py --algo ppo --env CartPole-v1 -f logs/ |
|
# Upload the model and generate video (when possible) |
|
python -m utils.push_to_hub --algo ppo --env CartPole-v1 -f logs/ -orga sb3 |
|
``` |
|
|