Edit model card

TRPO Agent playing Walker2DBulletEnv-v0

This is a trained model of a TRPO agent playing Walker2DBulletEnv-v0 using the stable-baselines3 library and the RL Zoo.

The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included.

Usage (with SB3 RL Zoo)

RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo
SB3: https://github.com/DLR-RM/stable-baselines3
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib

# Download model and save it into the logs/ folder
python -m rl_zoo3.load_from_hub --algo trpo --env Walker2DBulletEnv-v0 -orga sb3 -f logs/
python enjoy.py --algo trpo --env Walker2DBulletEnv-v0  -f logs/

Training (with the RL Zoo)

python train.py --algo trpo --env Walker2DBulletEnv-v0 -f logs/
# Upload the model and generate video (when possible)
python -m rl_zoo3.push_to_hub --algo trpo --env Walker2DBulletEnv-v0 -f logs/ -orga sb3

Hyperparameters

OrderedDict([('batch_size', 128),
             ('cg_damping', 0.1),
             ('cg_max_steps', 25),
             ('gae_lambda', 0.95),
             ('gamma', 0.99),
             ('learning_rate', 0.001),
             ('n_critic_updates', 20),
             ('n_envs', 2),
             ('n_steps', 1024),
             ('n_timesteps', 2000000.0),
             ('normalize', True),
             ('policy', 'MlpPolicy'),
             ('sub_sampling_factor', 1),
             ('normalize_kwargs', {'norm_obs': True, 'norm_reward': False})])
Downloads last month
2
Video Preview
loading

Evaluation results

  • mean_reward on Walker2DBulletEnv-v0
    self-reported
    1055.77 +/- 924.98