Edit model card
Configuration Parsing Warning: In adapter_config.json: "peft.task_type" must be a string

Config

model_name_or_path = "openai/whisper-large-v2"
language = "Marathi"
language_abbr = "mr"
task = "transcribe"
dataset_name = "mozilla-foundation/common_voice_11_0"

common_voice["train"] = load_dataset(dataset_name, language_abbr, split="train+validation", use_auth_token=True)
common_voice["test"] = load_dataset(dataset_name, language_abbr, split="test", use_auth_token=True)

feature_extractor = AutoFeatureExtractor.from_pretrained(model_name_or_path)
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, language=language, task=task)
processor = AutoProcessor.from_pretrained(model_name_or_path, language=language, task=task)


model = AutoModelForSpeechSeq2Seq.from_pretrained(model_name_or_path, load_in_8bit=True, device_map="auto")
config = LoraConfig(r=32, lora_alpha=64, target_modules=["q_proj", "v_proj"], lora_dropout=0.05, bias="none")
model = get_peft_model(model, config)
model.print_trainable_parameters()
#"trainable params: 15728640 || all params: 1559033600 || trainable%: 1.0088711365810203"

Training procedure

The following bitsandbytes quantization config was used during training:

  • load_in_8bit: True
  • load_in_4bit: False
  • llm_int8_threshold: 6.0
  • llm_int8_skip_modules: None
  • llm_int8_enable_fp32_cpu_offload: False
  • llm_int8_has_fp16_weight: False
  • bnb_4bit_quant_type: fp4
  • bnb_4bit_use_double_quant: False
  • bnb_4bit_compute_dtype: float32

Framework versions

  • PEFT 0.5.0

wer=38.514602540132806

Downloads last month
2
Inference API
Unable to determine this model’s pipeline type. Check the docs .