sdinger commited on
Commit
39ea2df
1 Parent(s): ea59cf3

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +3 -5
README.md CHANGED
@@ -11,18 +11,16 @@ language_abbr = "mr"
11
  task = "transcribe"
12
  dataset_name = "mozilla-foundation/common_voice_11_0"
13
 
 
 
 
14
  feature_extractor = AutoFeatureExtractor.from_pretrained(model_name_or_path)
15
  tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, language=language, task=task)
16
  processor = AutoProcessor.from_pretrained(model_name_or_path, language=language, task=task)
17
 
18
 
19
- common_voice["train"] = load_dataset(dataset_name, language_abbr, split="train+validation", use_auth_token=True)
20
- common_voice["test"] = load_dataset(dataset_name, language_abbr, split="test", use_auth_token=True)
21
-
22
-
23
  model = AutoModelForSpeechSeq2Seq.from_pretrained(model_name_or_path, load_in_8bit=True, device_map="auto")
24
  config = LoraConfig(r=32, lora_alpha=64, target_modules=["q_proj", "v_proj"], lora_dropout=0.05, bias="none")
25
-
26
  model = get_peft_model(model, config)
27
  model.print_trainable_parameters()
28
  #"trainable params: 15728640 || all params: 1559033600 || trainable%: 1.0088711365810203"
 
11
  task = "transcribe"
12
  dataset_name = "mozilla-foundation/common_voice_11_0"
13
 
14
+ common_voice["train"] = load_dataset(dataset_name, language_abbr, split="train+validation", use_auth_token=True)
15
+ common_voice["test"] = load_dataset(dataset_name, language_abbr, split="test", use_auth_token=True)
16
+
17
  feature_extractor = AutoFeatureExtractor.from_pretrained(model_name_or_path)
18
  tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, language=language, task=task)
19
  processor = AutoProcessor.from_pretrained(model_name_or_path, language=language, task=task)
20
 
21
 
 
 
 
 
22
  model = AutoModelForSpeechSeq2Seq.from_pretrained(model_name_or_path, load_in_8bit=True, device_map="auto")
23
  config = LoraConfig(r=32, lora_alpha=64, target_modules=["q_proj", "v_proj"], lora_dropout=0.05, bias="none")
 
24
  model = get_peft_model(model, config)
25
  model.print_trainable_parameters()
26
  #"trainable params: 15728640 || all params: 1559033600 || trainable%: 1.0088711365810203"