Edit model card

xLAM-8x7b-r-GGUF

Original Model

Salesforce/xLAM-8x7b-r

Run with LlamaEdge

  • LlamaEdge version: coming soon
  • Context size: 32000

Quantized GGUF Models

Name Quant method Bits Size Use case
xLAM-8x7b-r-Q2_K.gguf Q2_K 2 17.3 GB smallest, significant quality loss - not recommended for most purposes
xLAM-8x7b-r-Q3_K_L.gguf Q3_K_L 3 24.2 GB small, substantial quality loss
xLAM-8x7b-r-Q3_K_M.gguf Q3_K_M 3 22.5 GB very small, high quality loss
xLAM-8x7b-r-Q3_K_S.gguf Q3_K_S 3 20.4 GB very small, high quality loss
xLAM-8x7b-r-Q4_0.gguf Q4_0 4 26.4 GB legacy; small, very high quality loss - prefer using Q3_K_M
xLAM-8x7b-r-Q4_K_M.gguf Q4_K_M 4 28.4 GB medium, balanced quality - recommended
xLAM-8x7b-r-Q4_K_S.gguf Q4_K_S 4 26.7 GB small, greater quality loss
xLAM-8x7b-r-Q5_0.gguf Q5_0 5 32.2 GB legacy; medium, balanced quality - prefer using Q4_K_M
xLAM-8x7b-r-Q5_K_M.gguf Q5_K_M 5 33.2 GB large, very low quality loss - recommended
xLAM-8x7b-r-Q5_K_S.gguf Q5_K_S 5 32.2 GB large, low quality loss - recommended
xLAM-8x7b-r-Q6_K.gguf Q6_K 6 38.4 GB very large, extremely low quality loss
xLAM-8x7b-r-Q8_0.gguf Q8_0 8 49.6 GB very large, extremely low quality loss - not recommended
xLAM-8x7b-r-f16-00001-of-00004.gguf f16 16 29.4 GB
xLAM-8x7b-r-f16-00002-of-00004.gguf f16 16 30.0 GB
xLAM-8x7b-r-f16-00003-of-00004.gguf f16 16 29.3 GB
xLAM-8x7b-r-f16-00004-of-00004.gguf f16 16 4.78 GB

Quantized with llama.cpp b3613.

Downloads last month
33
GGUF
Model size
46.7B params
Architecture
llama

2-bit

3-bit

4-bit

5-bit

6-bit

8-bit

16-bit

Inference Examples
Inference API (serverless) has been turned off for this model.

Model tree for second-state/xLAM-8x7b-r-GGUF

Quantized
(8)
this model