language:
- pt
license: llama2
library_name: transformers
tags:
- code
- analytics
- analise-dados
- portugues-BR
datasets:
- semantixai/Test-Dataset-Lloro
base_model: codellama/CodeLlama-7b-Instruct-hf
model-index:
- name: LloroV2
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: ENEM Challenge (No Images)
type: eduagarcia/enem_challenge
split: train
args:
num_few_shot: 3
metrics:
- type: acc
value: 26.03
name: accuracy
source:
url: >-
https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=semantixai/LloroV2
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BLUEX (No Images)
type: eduagarcia-temp/BLUEX_without_images
split: train
args:
num_few_shot: 3
metrics:
- type: acc
value: 29.07
name: accuracy
source:
url: >-
https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=semantixai/LloroV2
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: OAB Exams
type: eduagarcia/oab_exams
split: train
args:
num_few_shot: 3
metrics:
- type: acc
value: 32.53
name: accuracy
source:
url: >-
https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=semantixai/LloroV2
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Assin2 RTE
type: assin2
split: test
args:
num_few_shot: 15
metrics:
- type: f1_macro
value: 57.19
name: f1-macro
source:
url: >-
https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=semantixai/LloroV2
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Assin2 STS
type: eduagarcia/portuguese_benchmark
split: test
args:
num_few_shot: 15
metrics:
- type: pearson
value: 26.81
name: pearson
source:
url: >-
https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=semantixai/LloroV2
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: FaQuAD NLI
type: ruanchaves/faquad-nli
split: test
args:
num_few_shot: 15
metrics:
- type: f1_macro
value: 43.77
name: f1-macro
source:
url: >-
https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=semantixai/LloroV2
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HateBR Binary
type: ruanchaves/hatebr
split: test
args:
num_few_shot: 25
metrics:
- type: f1_macro
value: 68.02
name: f1-macro
source:
url: >-
https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=semantixai/LloroV2
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: PT Hate Speech Binary
type: hate_speech_portuguese
split: test
args:
num_few_shot: 25
metrics:
- type: f1_macro
value: 38.53
name: f1-macro
source:
url: >-
https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=semantixai/LloroV2
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: tweetSentBR
type: eduagarcia-temp/tweetsentbr
split: test
args:
num_few_shot: 25
metrics:
- type: f1_macro
value: 35.21
name: f1-macro
source:
url: >-
https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=semantixai/LloroV2
name: Open Portuguese LLM Leaderboard
Lloro 7B
Lloro, developed by Semantix Research Labs , is a language Model that was trained to effectively perform Portuguese Data Analysis in Python. It is a fine-tuned version of codellama/CodeLlama-7b-Instruct-hf, that was trained on synthetic datasets . The fine-tuning process was performed using the QLORA metodology on a GPU V100 with 16 GB of RAM.
Model description
Model type: A 7B parameter fine-tuned on synthetic datasets.
Language(s) (NLP): Primarily Portuguese, but the model is capable to understand English as well
Finetuned from model: codellama/CodeLlama-7b-Instruct-hf
What is Lloro's intended use(s)?
Lloro is built for data analysis in Portuguese contexts .
Input : Text
Output : Text (Code)
Usage
Using Transformers
#Import required libraries
import torch
from transformers import (
AutoModelForCausalLM,
AutoTokenizer
)
#Load Model
model_name = "semantixai/LloroV2"
base_model = AutoModelForCausalLM.from_pretrained(
model_name,
return_dict=True,
torch_dtype=torch.float16,
device_map="auto",
)
#Load Tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
#Define Prompt
user_prompt = "Desenvolva um algoritmo em Python para calcular a média e a mediana dos preços de vendas por tipo de material do produto."
system = "Provide answers in Python without explanations, only the code"
prompt_template = f"[INST] <<SYS>>\\n{system}\\n<</SYS>>\\n\\n{user_prompt}[/INST]"
#Call the model
input_ids = tokenizer([prompt_template], return_tensors="pt")["input_ids"].to("cuda")
outputs = base_model.generate(
input_ids,
do_sample=True,
top_p=0.95,
max_new_tokens=1024,
temperature=0.1,
)
#Decode and retrieve Output
output_text = tokenizer.batch_decode(outputs, skip_prompt=True, skip_special_tokens=False)
display(output_text)
Using an OpenAI compatible inference server (like vLLM)
from openai import OpenAI
client = OpenAI(
api_key="EMPTY",
base_url="http://localhost:8000/v1",
)
user_prompt = "Desenvolva um algoritmo em Python para calcular a média e a mediana dos preços de vendas por tipo de material do produto."
completion = client.chat.completions.create(temperature=0.1,frequency_penalty=0.1,model="semantixai/LloroV2",messages=[{"role":"system","content":"Provide answers in Python without explanations, only the code"},{"role":"user","content":user_prompt}])
Params Training Parameters
Params | Training Data | Examples | Tokens | LR |
---|---|---|---|---|
7B | Pairs synthetic instructions/code | 28907 | 3 031 188 | 1e-5 |
Model Sources
Test Dataset Repository: https://huggingface.co/datasets/semantixai/Test-Dataset-Lloro
Model Dates Lloro was trained between November 2023 and January 2024.
Performance
Modelo | LLM as Judge | Code Bleu Score | Rouge-L | CodeBert- Precision | CodeBert-Recall | CodeBert-F1 | CodeBert-F3 |
---|---|---|---|---|---|---|---|
GPT 3.5 | 91.22% | 0.2745 | 0.2189 | 0.7502 | 0.7146 | 0.7303 | 0.7175 |
Instruct -Base | 97.40% | 0.2487 | 0.1146 | 0.6997 | 0.6473 | 0.6713 | 0.6518 |
Instruct -FT | 97.76% | 0.3264 | 0.3602 | 0.7942 | 0.8178 | 0.8042 | 0.8147 |
Training Infos: The following hyperparameters were used during training:
Parameter | Value |
---|---|
learning_rate | 1e-5 |
weight_decay | 0.0001 |
train_batch_size | 1 |
eval_batch_size | 1 |
seed | 42 |
optimizer | Adam - paged_adamw_32bit |
lr_scheduler_type | cosine |
lr_scheduler_warmup_ratio | 0.03 |
num_epochs | 5.0 |
QLoRA hyperparameters The following parameters related with the Quantized Low-Rank Adaptation and Quantization were used during training:
Parameter | Value |
---|---|
lora_r | 16 |
lora_alpha | 64 |
lora_dropout | 0.1 |
storage_dtype | "nf4" |
compute_dtype | "float16" |
Experiments
Model | Epochs | Overfitting | Final Epochs | Training Hours | CO2 Emission (Kg) |
---|---|---|---|---|---|
Code Llama Instruct | 1 | No | 1 | 8.1 | 1.337 |
Code Llama Instruct | 5 | Yes | 3 | 45.6 | 9.12 |
Framework versions
Library | Version |
---|---|
bitsandbytes | 0.40.2 |
Datasets | 2.14.3 |
Pytorch | 2.0.1 |
Tokenizers | 0.14.1 |
Transformers | 4.34.0 |
Open Portuguese LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Average | 39.68 |
ENEM Challenge (No Images) | 26.03 |
BLUEX (No Images) | 29.07 |
OAB Exams | 32.53 |
Assin2 RTE | 57.19 |
Assin2 STS | 26.81 |
FaQuAD NLI | 43.77 |
HateBR Binary | 68.02 |
PT Hate Speech Binary | 38.53 |
tweetSentBR | 35.21 |