File size: 5,681 Bytes
184bad6
 
20d0716
184bad6
 
 
 
7861562
 
184bad6
20d0716
62f0d48
184bad6
20d0716
de6d9d9
ff80c79
39c525b
ff80c79
39c525b
 
 
d5c26bf
 
 
 
 
 
 
184bad6
 
bee5570
184bad6
bee5570
20d0716
4b65e5d
20d0716
 
 
 
184bad6
 
20d0716
184bad6
 
 
 
 
 
 
20d0716
184bad6
 
20d0716
184bad6
de6d9d9
184bad6
 
 
 
20d0716
 
184bad6
 
 
 
 
 
20d0716
184bad6
 
 
 
 
 
 
 
 
20d0716
184bad6
 
de6d9d9
 
184bad6
 
 
 
 
 
 
 
20d0716
184bad6
 
 
 
 
 
20d0716
 
184bad6
20d0716
184bad6
20d0716
 
 
 
184bad6
20d0716
184bad6
20d0716
184bad6
20d0716
184bad6
20d0716
 
 
 
184bad6
20d0716
184bad6
20d0716
184bad6
20d0716
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
184bad6
 
20d0716
 
 
 
 
 
 
184bad6
8b0b934
20d0716
52d6fc0
 
 
20d0716
 
 
52d6fc0
20d0716
 
 
52d6fc0
 
 
20d0716
 
 
52d6fc0
20d0716
52d6fc0
 
20d0716
 
184bad6
20d0716
184bad6
20d0716
62f0d48
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
---
language: en
license: mit
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- task-oriented-dialogues
- dialog-flow
datasets:
- Salesforce/dialogstudio
- sergioburdisso/dialog2flow-dataset
pipeline_tag: sentence-similarity
base_model:
- google-bert/bert-base-uncased
widget:
- source_sentence: "your phone please"
  sentences:
    - "please get their phone number"
    - "okay can i get your phone number please to make that booking"
    - "okay can i please get your id number"
  output:
    - label: "0"
      score: 0.9
    - label: "1"
      score: 0.85
    - label: "2"
      score: 0.27
---

![image/png](voronoi_umap.png)

# **Dialog2Flow joint target model** (BERT-base)

This is the original **D2F$_{joint}$** model introduced in the paper ["Dialog2Flow: Pre-training Soft-Contrastive Action-Driven Sentence Embeddings for Automatic Dialog Flow Extraction"](https://arxiv.org/abs/2410.18481) published in the EMNLP 2024 main conference.

Implementation-wise, this is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or search.

<!--- Describe your model here -->

## Usage (Sentence-Transformers)

Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:

```
pip install -U sentence-transformers
```

Then you can use the model like this:

```python
from sentence_transformers import SentenceTransformer
sentences = ["your phone please", "okay may i have your telephone number please"]

model = SentenceTransformer('sergioburdisso/dialog2flow-joint-bert-base')
embeddings = model.encode(sentences)
print(embeddings)
```



## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.

```python
from transformers import AutoTokenizer, AutoModel
import torch


#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
    token_embeddings = model_output[0] #First element of model_output contains all token embeddings
    input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
    return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)


# Sentences we want sentence embeddings for
sentences = ['your phone please', 'okay may i have your telephone number please']

# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('sergioburdisso/dialog2flow-joint-bert-base')
model = AutoModel.from_pretrained('sergioburdisso/dialog2flow-joint-bert-base')

# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')

# Compute token embeddings
with torch.no_grad():
    model_output = model(**encoded_input)

# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])

print("Sentence embeddings:")
print(sentence_embeddings)
```

## Training
The model was trained with the parameters:

**DataLoader**:

`torch.utils.data.dataloader.DataLoader` of length 363506 with parameters:
```
{'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
```

**Loss**:

`spretrainer.losses.LabeledContrastiveLoss.LabeledContrastiveLoss` 

**DataLoader**:

`torch.utils.data.dataloader.DataLoader` of length 49478 with parameters:
```
{'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
```

**Loss**:

`spretrainer.losses.LabeledContrastiveLoss.LabeledContrastiveLoss` 

Parameters of the fit()-Method:
```
{
    "epochs": 15,
    "evaluation_steps": 164,
    "evaluator": [
        "spretrainer.evaluation.FewShotClassificationEvaluator.FewShotClassificationEvaluator"
    ],
    "max_grad_norm": 1,
    "optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
    "optimizer_params": {
        "lr": 3e-06
    },
    "scheduler": "WarmupLinear",
    "warmup_steps": 100,
    "weight_decay": 0.01
}
```


## Full Model Architecture
```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 64, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
```

## Citation

If you found the paper and/or this repository useful, please consider citing our work :)

EMNLP paper: [here](https://aclanthology.org/2024.emnlp-main.310/).

```bibtex
@inproceedings{burdisso-etal-2024-dialog2flow,
    title = "{D}ialog2{F}low: Pre-training Soft-Contrastive Action-Driven Sentence Embeddings for Automatic Dialog Flow Extraction",
    author = "Burdisso, Sergio  and
      Madikeri, Srikanth  and
      Motlicek, Petr",
    editor = "Al-Onaizan, Yaser  and
      Bansal, Mohit  and
      Chen, Yun-Nung",
    booktitle = "Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing",
    month = nov,
    year = "2024",
    address = "Miami, Florida, USA",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2024.emnlp-main.310",
    pages = "5421--5440",
}
```

## License

Copyright (c) 2024 [Idiap Research Institute](https://www.idiap.ch/).
MIT License.