DeBERTaV3_model_V4 / README.md
sergiomvazq's picture
End of training
7b86591 verified
metadata
license: mit
base_model: microsoft/deberta-v3-small
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: DeBERTaV3_model_V4
    results: []

DeBERTaV3_model_V4

This model is a fine-tuned version of microsoft/deberta-v3-small on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1557
  • Accuracy: 0.9485
  • F1: 0.7248
  • Precision: 0.7778
  • Recall: 0.6786

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 5
  • eval_batch_size: 5
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 12

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
No log 1.0 159 0.2879 0.9 0.0 0.0 0.0
No log 2.0 318 0.2226 0.9189 0.3457 0.8936 0.2143
No log 3.0 477 0.1883 0.9347 0.5975 0.7787 0.4847
0.2618 4.0 636 0.1557 0.9485 0.7248 0.7778 0.6786
0.2618 5.0 795 0.1593 0.9480 0.7273 0.7640 0.6939
0.2618 6.0 954 0.1564 0.9505 0.7413 0.7765 0.7092
0.0829 7.0 1113 0.1636 0.9520 0.7552 0.7713 0.7398
0.0829 8.0 1272 0.1761 0.9485 0.7363 0.7540 0.7194
0.0829 9.0 1431 0.1686 0.9536 0.7599 0.7869 0.7347
0.0297 10.0 1590 0.1807 0.9526 0.7584 0.7725 0.7449
0.0297 11.0 1749 0.1765 0.9531 0.7629 0.7708 0.7551
0.0297 12.0 1908 0.1790 0.9536 0.7649 0.7749 0.7551

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.1+cu121
  • Datasets 2.19.2
  • Tokenizers 0.19.1