Nandine-7b / README.md
sethuiyer's picture
Adding Evaluation Results (#1)
2923fee verified
---
language:
- en
license: apache-2.0
library_name: transformers
tags:
- merge
- mergekit
- lazymergekit
inference: false
base_model:
- senseable/Westlake-7B
- Guilherme34/Samantha-v2
- uukuguy/speechless-mistral-six-in-one-7b
pipeline_tag: text-generation
model-index:
- name: sethuiyer/Nandine-7b
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 69.28
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sethuiyer/Nandine-7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 87.01
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sethuiyer/Nandine-7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 64.83
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sethuiyer/Nandine-7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 62.1
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sethuiyer/Nandine-7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 83.19
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sethuiyer/Nandine-7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 62.4
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sethuiyer/Nandine-7b
name: Open LLM Leaderboard
---
# Nandine-7b
<p align="center">
<img src="https://huggingface.co/sethuiyer/Nandine-7b/resolve/main/nandine.webp" height="128px" alt="Nandine">
</p>
This is Nandine-7b, rated **87.47/100** by GPT-4 on a collection of 30 synthetic prompts generated by GPT-4.
Nandine-7b is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [senseable/Westlake-7B](https://huggingface.co/senseable/Westlake-7B)
* [Guilherme34/Samantha-v2](https://huggingface.co/Guilherme34/Samantha-v2)
* [uukuguy/speechless-mistral-six-in-one-7b](https://huggingface.co/uukuguy/speechless-mistral-six-in-one-7b)
Nandine-7b represents a harmonious amalgamation of narrative skill, empathetic interaction, intellectual depth, and eloquent communication.
## OpenLLM Benchmark
| Model | Average ⬆️ | ARC | HellaSwag | MMLU | TruthfulQA | Winogrande | GSM8K |
|--------------------------------|------------|-------|-----------|-------|------------|------------|-------|
| sethuiyer/Nandine-7b 📑 | 71.47 | 69.28 | 87.01 | 64.83 | 62.1 | 83.19 | 62.4 |
## Nous Benchmark
| Model |AGIEval|GPT4All|TruthfulQA|Bigbench|Average|
|---------------------------------------------------------|------:|------:|---------:|-------:|------:|
|[Nandine-7b](https://huggingface.co/sethuiyer/Nandine-7b)| 43.54| 76.41| 61.73| 45.27| 56.74|
For more details, refer [here](https://huggingface.co/sethuiyer/Nandine-7b/blob/main/EVAL.md)
**Pros:**
1. **Strong Narrative Skills:** Excels in storytelling, creating engaging and imaginative narratives.
2. **Accurate Information Delivery:** Provides factual and detailed information across various topics.
3. **Comprehensive Analysis:** Capable of well-rounded discussions on complex and ethical topics.
4. **Emotional Intelligence:** Shows empathy and understanding in responses requiring emotional sensitivity.
5. **Clarity and Structure:** Maintains clear and well-structured communication.
**Cons:**
1. **Language Translation Limitations:** Challenges in providing fluent and natural translations.
2. **Incomplete Problem Solving:** Some logical or mathematical problems are not solved accurately.
3. **Lack of Depth in Certain Areas:** Needs deeper exploration in some responses for a more comprehensive understanding.
4. **Occasional Imbalance in Historical Context:** Some historical explanations could be more balanced.
5. **Room for Enhanced Creativity:** While creative storytelling is strong, there's potential for more varied responses in hypothetical scenarios.
**Intended Use:**
Ideal for users seeking a versatile AI companion for creative writing, thoughtful discussions, and general assistance.
## 🧩 Configuration
```yaml
models:
- model: senseable/Westlake-7B
parameters:
weight: 0.55
density: 0.6
- model: Guilherme34/Samantha-v2
parameters:
weight: 0.10
density: 0.3
- model: uukuguy/speechless-mistral-six-in-one-7b
parameters:
weight: 0.35
density: 0.6
merge_method: dare_ties
base_model: mistralai/Mistral-7B-v0.1
parameters:
int8_mask: true
dtype: bfloat16
```
## 💻 Usage
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "sethuiyer/Nandine-7b"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```
## GGUF
GGUF files are available at [Nandine-7b-GGUF](https://huggingface.co/sethuiyer/Nandine-7b-GGUF/tree/main)
## Ollama
Nandine is now available on Ollama. You can use it by running the command ```ollama run stuehieyr/nandine``` in your
terminal. If you have limited computing resources, check out this [video](https://www.youtube.com/watch?v=Qa1h7ygwQq8) to learn how to run it on
a Google Colab backend.
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_sethuiyer__Nandine-7b)
| Metric |Value|
|---------------------------------|----:|
|Avg. |71.47|
|AI2 Reasoning Challenge (25-Shot)|69.28|
|HellaSwag (10-Shot) |87.01|
|MMLU (5-Shot) |64.83|
|TruthfulQA (0-shot) |62.10|
|Winogrande (5-shot) |83.19|
|GSM8k (5-shot) |62.40|