metadata
license: afl-3.0
language:
- yo
datasets:
- afriqa
- xlsum
- menyo20k_mt
- alpaca-gpt4
Model Description
mistral_7b_yo_instruct is a text generation model in Yorùbá.
Intended uses & limitations
How to use
from transformers import AutoModelForCausalLM, AutoTokenizer
model_path = "seyabde/mistral_7b_yo_instruct"
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(
model_path,
device_map="auto",
torch_dtype='auto'
).eval()
# Prompt content: "Pẹlẹ o. Bawo ni o se wa?" ("Hello. How are you?")
messages = [
{"role": "user", "content": "Pẹlẹ o. Bawo ni o se wa?"}
]
input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt')
output_ids = model.generate(input_ids.to('cuda'))
response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True)
# Model response:
print(response)
Example outputs
Ilana (Instruction): '...'
mistral_7b_yo_instruct: '...'
Eval results
Coming soon
Limitations and bias
This model is limited by its training dataset of entity-annotated news articles from a specific span of time. This may not generalize well for all use cases in different domains.
Training data
This model is fine-tuned on 60k+ instruction-following demonstrations built from an aggregation of datasets (AfriQA, XLSum, MENYO-20k), and translations of Alpaca-gpt4).
Use and safety
We emphasize that mistral_7b_yo_instruct is intended only for research purposes and is not ready to be deployed for general use, namely because we have not designed adequate safety measures.