sfulay's picture
Model save
0a3e251 verified
|
raw
history blame
3.61 kB
metadata
license: apache-2.0
base_model: alignment-handbook/zephyr-7b-sft-full
tags:
  - trl
  - dpo
  - alignment-handbook
  - generated_from_trainer
model-index:
  - name: zephyr-7b-dpo-full-gpt_consistent-reward-scale-1-rpo
    results: []

zephyr-7b-dpo-full-gpt_consistent-reward-scale-1-rpo

This model is a fine-tuned version of alignment-handbook/zephyr-7b-sft-full on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1132
  • Rewards/chosen: -0.3948
  • Rewards/rejected: -0.9598
  • Rewards/accuracies: 0.7543
  • Rewards/margins: 0.5650
  • Logps/rejected: -342.4998
  • Logps/chosen: -324.5692
  • Logits/rejected: 1.4353
  • Logits/chosen: 0.4067

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-07
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 55
  • distributed_type: multi-GPU
  • num_devices: 8
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 128
  • total_eval_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen
0.1732 0.1147 50 0.1641 0.0166 -0.1092 0.7069 0.1259 -257.4446 -283.4267 -2.4943 -2.5737
0.1412 0.2294 100 0.1347 -0.4342 -0.7962 0.7284 0.3620 -326.1406 -328.5106 -0.1538 -0.4184
0.1307 0.3440 150 0.1261 -0.3553 -0.8583 0.7284 0.5030 -332.3533 -320.6210 0.7144 0.0181
0.1238 0.4587 200 0.1199 -0.4108 -0.9476 0.7328 0.5368 -341.2862 -326.1717 1.2989 0.2969
0.1185 0.5734 250 0.1166 -0.3086 -0.8924 0.7543 0.5838 -335.7633 -315.9550 0.8516 -0.1745
0.1228 0.6881 300 0.1155 -0.3695 -0.9267 0.7457 0.5571 -339.1875 -322.0434 0.8574 -0.1316
0.1213 0.8028 350 0.1136 -0.4396 -1.0157 0.7629 0.5762 -348.0973 -329.0486 1.5740 0.5152
0.12 0.9174 400 0.1132 -0.3948 -0.9598 0.7543 0.5650 -342.4998 -324.5692 1.4353 0.4067

Framework versions

  • Transformers 4.44.0.dev0
  • Pytorch 2.1.2
  • Datasets 2.20.0
  • Tokenizers 0.19.1