bert-finetuned-mrpc / README.md
autoevaluator's picture
Add verifyToken field to verify evaluation results are produced by Hugging Face's automatic model evaluator
f3a976a
|
raw
history blame
4.35 kB
metadata
language:
  - en
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - glue
metrics:
  - accuracy
  - f1
model-index:
  - name: bert-finetuned-mrpc
    results:
      - task:
          type: text-classification
          name: Text Classification
        dataset:
          name: GLUE MRPC
          type: glue
          args: mrpc
        metrics:
          - type: accuracy
            value: 0.8602941176470589
            name: Accuracy
          - type: f1
            value: 0.9032258064516129
            name: F1
      - task:
          type: natural-language-inference
          name: Natural Language Inference
        dataset:
          name: glue
          type: glue
          config: mrpc
          split: validation
        metrics:
          - type: accuracy
            value: 0.8602941176470589
            name: Accuracy
            verified: true
            verifyToken: >-
              eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMDBkNTFiZTMwNDUzMTcwM2M3ZGRkNGU4OTAzNWU3OGI4OWI3ZDNkOWM3NTY5NjMzYTA3MGEzNmI3ZDdlZjc1NiIsInZlcnNpb24iOjF9.PHE4--RyyOTkZ5taAbFYrKOR1RXEeufilEHfGrkQLChupGmtkZOM1zeNOpD2oXHjFDCtAAvW0QNDg2o4ZilBBA
          - type: precision
            value: 0.8580645161290322
            name: Precision
            verified: true
            verifyToken: >-
              eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYmIyMDczODQ4MmRjYzJkMTU2MzcwZjEzNzVjMjk3NGFhOWNkOTE5MzJhYjBmYzQ4YmI4NDM5YTI4Y2M3MTRkYyIsInZlcnNpb24iOjF9.T12Muvex24JeP2_LYJLZK2L9j4oBhlN-sBkRJVb0qLNMY3e5n6v8T_AJBogzi1jHexLd4XxwEY1Hy0QSkJRmDw
          - type: recall
            value: 0.953405017921147
            name: Recall
            verified: true
            verifyToken: >-
              eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZTU4Zjg4YjgwYmYyYjZlOTIwNDkyNTk2YWQ5YTJiNDQ0OTIyNTE4YTg5ZTNmNzRjNzgyNzE2NTI1YzhjMzJjNyIsInZlcnNpb24iOjF9.A2SNduak8mRBenH-XukaaS0QnxVDT6FzO2hgXzUFvCwfLv3zBDeNY-a87gPED_J0WF9iwN3X5Ebe4S2cKMAgAA
          - type: auc
            value: 0.9257731099441527
            name: AUC
            verified: true
            verifyToken: >-
              eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYmI1NTE3YzBmYTQ2MDMxMTg0Y2NkYmIwNjM2ZWY4MWVmNGI0NjQ0YTZhYzFiMWNiNTA2ODA0YTA3ZDdkYjMyMyIsInZlcnNpb24iOjF9.1R69m5DXLgazlFfznzfNwg_aVKNcPw058bzYeh0ZdJ17nITKyST0pzvSSXtU8TdS-6-e3sWxgcMR_HyJ5o9eBQ
          - type: f1
            value: 0.9032258064516129
            name: F1
            verified: true
            verifyToken: >-
              eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNDIyMzc1ZDY5N2MyZjFiNzU5M2E2MjVhMGE4Njk1OGNiYmMyMGFiYjJmZjcyMmU2MWFmMWM2MWQzNTNmNDkyYSIsInZlcnNpb24iOjF9._v8lz1SCg2pTKeaZz3LHDeHEsrM5dVFA_oLODv4beZg9vxS3kY3AzHf69n_Sy9B7Vd7Oam656fMH1K_409RoAA
          - type: loss
            value: 0.5150377154350281
            name: loss
            verified: true
            verifyToken: >-
              eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYTYxMjYzNzFkYWU0NjY0MTFiYmViMzI2YTA0ODNlZjhiMjJkZWEyNjlhODA5ZWY1NjM4ODNmYTdjYzI2NTJmZCIsInZlcnNpb24iOjF9.ilV_XdBmf1Qb0wnhPux_RWJft0Bj3WnYv0vdEb3ysAUQ0pcFlYe-S2SaLjQguKrILTB8w9q0MOGle0AZYXOACg

bert-finetuned-mrpc

This model is a fine-tuned version of bert-base-cased on the GLUE MRPC dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5152
  • Accuracy: 0.8603
  • F1: 0.9032
  • Combined Score: 0.8818

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 2
  • total_train_batch_size: 16
  • total_eval_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3.0

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Combined Score
No log 1.0 230 0.3668 0.8431 0.8881 0.8656
No log 2.0 460 0.3751 0.8578 0.9017 0.8798
0.4264 3.0 690 0.5152 0.8603 0.9032 0.8818

Framework versions

  • Transformers 4.11.0.dev0
  • Pytorch 1.8.1+cu111
  • Datasets 1.10.3.dev0
  • Tokenizers 0.10.3