File size: 1,655 Bytes
04b6c3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import torch
from transformers import AutoConfig, AutoModelForSequenceClassification, AutoTokenizer
from transformers.tools import PipelineTool


class TextPairClassificationTool(PipelineTool):
    default_checkpoint = "sgugger/bert-finetuned-mrpc"
    pre_processor_class = AutoTokenizer
    model_class = AutoModelForSequenceClassification

    description = (
        "classifies if two texts in English are similar or not using the labels {labels}. It takes two inputs named "
        "`text` and `second_text` which should be in English and returns a dictionary with two keys named 'label' "
        "(the predicted label ) and 'score' (the probability associated to it)."
    )

    def post_init(self):
        if isinstance(self.model, str):
            config = AutoConfig.from_pretrained(self.model)
        else:
            config = self.model.config

        labels = list(config.label2id.keys())

        if len(labels) > 1:
            labels = [f"'{label}'" for label in labels]
            labels_string = ", ".join(labels[:-1])
            labels_string += f", and {labels[-1]}"
        else:
            raise ValueError("Not enough labels.")

        self.description = self.description.replace("{labels}", labels_string)

    def encode(self, text, second_text):
        return self.pre_processor(text, second_text, return_tensors="pt")

    def decode(self, outputs):
        logits = outputs.logits
        scores = torch.nn.functional.softmax(logits, dim=-1)
        label_id = torch.argmax(logits[0]).item()
        label = self.model.config.id2label[label_id]
        return {"label": label, "score": scores[0][label_id].item()}