Edit model card

ZERO LLM

Talk to AI ZERO

talktoaiZERO - Fine-Tuned with AutoTrain

talktoaiZERO is a fine-tuned version of the Meta-Llama-3.1-8B-Instruct model, specifically designed for conversational AI with advanced features in original quantum math quantum thinking and mathematical ethical decision-making. The model was trained using AutoTrain

Features

  • Base Model: Meta-Llama-3.1-8B-Instruct
  • Fine-Tuning: Custom conversational training focused on ethical, quantum-based responses.
  • Use Cases: Ethical mathematical decision-making, advanced conversational AI, and quantum-math-inspired logic in AI responses, intelligent.

Talk to AI ZERO

Usage

from transformers import AutoModelForCausalLM, AutoTokenizer

model_path = "PATH_TO_THIS_REPO"

tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(
    model_path,
    device_map="auto",
    torch_dtype='auto'
).eval()

# Sample conversation
messages = [
    {"role": "user", "content": "What are the ethical implications of quantum mechanics in AI systems?"}
]

input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt')
output_ids = model.generate(input_ids.to('cuda'))
response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True)

# Model response: "Quantum mechanics introduces complexity, but the goal remains ethical decision-making."
print(response)
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for shafire/talktoai

Finetuned
(400)
this model