whisper-tiny-300v2 / README.md
shane062's picture
End of training
06e05b3 verified
metadata
license: apache-2.0
base_model: openai/whisper-tiny
tags:
  - generated_from_trainer
datasets:
  - audiofolder
metrics:
  - wer
model-index:
  - name: whisper-tiny-300v2
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: audiofolder
          type: audiofolder
          config: default
          split: test
          args: default
        metrics:
          - name: Wer
            type: wer
            value: 86.48648648648648

whisper-tiny-300v2

This model is a fine-tuned version of openai/whisper-tiny on the audiofolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4117
  • Wer Ortho: 83.7838
  • Wer: 86.4865

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant_with_warmup
  • lr_scheduler_warmup_steps: 30
  • training_steps: 300

Training results

Training Loss Epoch Step Validation Loss Wer Ortho Wer
0.2322 20.0 60 1.3194 83.7838 83.7838
0.0267 40.0 120 1.3785 81.0811 81.0811
0.0002 60.0 180 1.3838 81.0811 81.0811
0.0001 80.0 240 1.4049 83.7838 83.7838
0.0 100.0 300 1.4117 83.7838 86.4865

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1