Edit model card

bert-base-banking77-pt2

This model is a fine-tuned version of bert-base-uncased on an PolyAI/banking77 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3089
  • F1: 0.9362

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss F1
3.261 1.0 313 1.0894 0.7969
0.5499 2.0 626 0.4196 0.9103
0.305 3.0 939 0.3403 0.9157
0.1277 4.0 1252 0.3020 0.9251
0.0857 5.0 1565 0.2911 0.9306
0.0347 6.0 1878 0.2865 0.9333
0.0251 7.0 2191 0.2994 0.9362
0.0111 8.0 2504 0.2970 0.9365
0.0075 9.0 2817 0.3102 0.9364
0.0058 10.0 3130 0.3089 0.9362

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1

How to use

from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline

ckpt = 'sharmax-vikas/bert-base-banking77-pt2'
tokenizer = AutoTokenizer.from_pretrained(ckpt)
model = AutoModelForSequenceClassification.from_pretrained(ckpt)

classifier = pipeline('text-classification', tokenizer=tokenizer, model=model)
classifier('What is the base of the exchange rates?')
# Output: [{'label': 'exchange_rate', 'score': 0.9961327314376831}]
Downloads last month
169
Safetensors
Model size
110M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for sharmax-vikas/bert-base-banking77-pt2

Finetuned
(2143)
this model

Dataset used to train sharmax-vikas/bert-base-banking77-pt2