File size: 4,101 Bytes
d6fb8b9
 
 
 
 
 
 
 
 
59577b3
 
 
 
 
 
 
 
 
 
 
 
01b324a
b455bb0
01b324a
 
 
59577b3
01c2dee
d6fb8b9
 
01c2dee
d6fb8b9
 
 
01c2dee
d6fb8b9
01c2dee
d6fb8b9
01c2dee
d6fb8b9
 
01c2dee
d6fb8b9
 
 
01c2dee
d6fb8b9
01c2dee
 
 
 
 
 
 
 
 
 
d6fb8b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb58dad
d6fb8b9
 
 
 
01c2dee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d6fb8b9
 
 
66c9560
d6fb8b9
 
 
 
 
13ee917
d6fb8b9
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
---
pipeline_tag: sentence-similarity
license: apache-2.0
tags:
- text2vec
- feature-extraction
- sentence-similarity
- transformers
---
# shibing624/text2vec-base-chinese
This is a CoSENT(Cosine Sentence) model: shibing624/text2vec-base-chinese.

It maps sentences to a 768 dimensional dense vector space and can be used for tasks 
like sentence embeddings, text matching or semantic search.


## Evaluation
For an automated evaluation of this model, see the *Evaluation Benchmark*: [text2vec](https://github.com/shibing624/text2vec)

- chinese text matching task:

| Model Name | ATEC | BQ | LCQMC | PAWSX | STS-B | Avg | QPS |
| :---- | :-: | :-: | :-: | :-: | :-: | :-: | :-: |
| w2v-light-tencent-chinese | 20.00 | 31.49 | 59.46 | 2.57 | 55.78 | 33.86 | 10283 |
| paraphrase-multilingual-MiniLM-L12-v2 | 18.42 | 38.52 | 63.96 | 10.14 | 78.90 | 41.99 | 2371 |
| text2vec-base-chinese | 31.93 | 42.67 | 70.16 | 17.21 | 79.30 | **48.25** | 2572 |


## Usage (text2vec)
Using this model becomes easy when you have [text2vec](https://github.com/shibing624/text2vec) installed:

```
pip install -U text2vec
```

Then you can use the model like this:

```python
from text2vec import SentenceModel
sentences = ['如何更换花呗绑定银行卡', '花呗更改绑定银行卡']

model = SentenceModel('shibing624/text2vec-base-chinese')
embeddings = model.encode(sentences)
print(embeddings)
```

## Usage (HuggingFace Transformers)
Without [text2vec](https://github.com/shibing624/text2vec), you can use the model like this: 

First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.

Install transformers:
```
pip install transformers
```

Then load model and predict:
```python
from transformers import BertTokenizer, BertModel
import torch

# Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
    token_embeddings = model_output[0]  # First element of model_output contains all token embeddings
    input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
    return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)

# Load model from HuggingFace Hub
tokenizer = BertTokenizer.from_pretrained('shibing624/text2vec-base-chinese')
model = BertModel.from_pretrained('shibing624/text2vec-base-chinese')
sentences = ['如何更换花呗绑定银行卡', '花呗更改绑定银行卡']
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')

# Compute token embeddings
with torch.no_grad():
    model_output = model(**encoded_input)
# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
```

## Usage (sentence-transformers)
[sentence-transformers](https://github.com/UKPLab/sentence-transformers) is a popular library to compute dense vector representations for sentences.

Install sentence-transformers:
```
pip install -U sentence-transformers
```

Then load model and predict:

```python
from sentence_transformers import SentenceTransformer

m = SentenceTransformer("shibing624/text2vec-base-chinese")
sentences = ['如何更换花呗绑定银行卡', '花呗更改绑定银行卡']

sentence_embeddings = m.encode(sentences)
print("Sentence embeddings:")
print(sentence_embeddings)
```


## Full Model Architecture
```
CoSENT(
  (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_mean_tokens': True})
)
```
## Citing & Authors
This model was trained by [text2vec](https://github.com/shibing624/text2vec). 
        
If you find this model helpful, feel free to cite:
```bibtex 
@software{text2vec,
  author = {Xu Ming},
  title = {text2vec: A Tool for Text to Vector},
  year = {2022},
  url = {https://github.com/shibing624/text2vec},
}
```