How to use
You can use this model directly with a pipeline:
from transformers import AutoTokenizer, pipeline
tokenizer = AutoTokenizer.from_pretrained("shihab17/bn-to-en-translation")
model = AutoModelForSeq2SeqLM.from_pretrained("shihab17/bn-to-en-translation")
sentence = 'ম্যাচ শেষে পুরস্কার বিতরণের মঞ্চে তামিমের মুখে মোস্তাফিজের প্রশংসা শোনা গেল'
translator = pipeline("translation_en_to_bn", model=model, tokenizer=tokenizer)
output = translator(sentence)
print(output)
bengali-en-to-bn
This model is a fine-tuned version of Helsinki-NLP/opus-mt-bn-en on the kde4 dataset. It achieves the following results on the evaluation set:
- Loss: 1.6885
- Bleu: 50.9475
- Gen Len: 6.7043
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
---|---|---|---|---|---|
1.8866 | 1.0 | 2047 | 1.6397 | 39.6617 | 8.0651 |
1.5769 | 2.0 | 4094 | 1.6160 | 33.0247 | 8.9865 |
1.3622 | 3.0 | 6141 | 1.6189 | 53.483 | 6.6037 |
1.2317 | 4.0 | 8188 | 1.6280 | 51.6882 | 6.762 |
1.1248 | 5.0 | 10235 | 1.6450 | 53.1619 | 6.5515 |
1.0297 | 6.0 | 12282 | 1.6587 | 52.3224 | 6.5905 |
0.9632 | 7.0 | 14329 | 1.6733 | 52.3362 | 6.5441 |
0.8831 | 8.0 | 16376 | 1.6802 | 49.3544 | 6.8272 |
0.8291 | 9.0 | 18423 | 1.6868 | 49.9486 | 6.792 |
0.8175 | 10.0 | 20470 | 1.6885 | 50.9475 | 6.7043 |
Framework versions
- Transformers 4.29.1
- Pytorch 2.0.0+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3
- Downloads last month
- 28
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.