shirzady1934's picture
End of training
4746847
metadata
license: apache-2.0
library_name: peft
tags:
  - generated_from_trainer
base_model: distilgpt2
model-index:
  - name: distilgpt-monolinugal
    results: []

distilgpt-monolinugal

This model is a fine-tuned version of distilgpt2 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 3.4876

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0005
  • train_batch_size: 12
  • eval_batch_size: 12
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 96
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 8
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
3.3098 0.16 200 3.5905
3.2847 0.32 400 3.5644
3.2612 0.48 600 3.5504
3.2636 0.64 800 3.5384
3.2481 0.8 1000 3.5301
3.2393 0.96 1200 3.5233
3.2381 1.12 1400 3.5184
3.2317 1.28 1600 3.5168
3.2244 1.44 1800 3.5123
3.2258 1.6 2000 3.5117
3.2238 1.76 2200 3.5058
3.2376 1.92 2400 3.5058
3.212 2.08 2600 3.5044
3.231 2.24 2800 3.5019
3.2044 2.4 3000 3.5003
3.2107 2.57 3200 3.5002
3.2096 2.73 3400 3.4996
3.215 2.89 3600 3.4963
3.2092 3.05 3800 3.4979
3.2034 3.21 4000 3.4964
3.1992 3.37 4200 3.4971
3.1975 3.53 4400 3.4941
3.222 3.69 4600 3.4932
3.2104 3.85 4800 3.4927
3.199 4.01 5000 3.4918
3.2033 4.17 5200 3.4927
3.201 4.33 5400 3.4924
3.1947 4.49 5600 3.4931
3.2172 4.65 5800 3.4907
3.201 4.81 6000 3.4908
3.2089 4.97 6200 3.4892
3.206 5.13 6400 3.4896
3.2074 5.29 6600 3.4884
3.2046 5.45 6800 3.4891
3.1899 5.61 7000 3.4888
3.196 5.77 7200 3.4891
3.1946 5.93 7400 3.4880
3.1951 6.09 7600 3.4887
3.1998 6.25 7800 3.4878
3.1775 6.41 8000 3.4880
3.1947 6.57 8200 3.4880
3.1876 6.73 8400 3.4876
3.1984 6.89 8600 3.4878
3.1927 7.05 8800 3.4875
3.2006 7.21 9000 3.4875
3.2042 7.37 9200 3.4875
3.1856 7.54 9400 3.4877
3.1952 7.7 9600 3.4877
3.1981 7.86 9800 3.4876

Framework versions

  • PEFT 0.7.1
  • Transformers 4.36.2
  • Pytorch 1.13.0+cu116
  • Datasets 2.16.0
  • Tokenizers 0.15.0