Edit model card

wav2vec2-large-xlsr-hindi

This model is a fine-tuned version of facebook/wav2vec2-large-xlsr-53 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0220
  • Wer: 0.5697

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
5.6122 1.81 400 3.3749 1.0
1.6592 3.61 800 1.0003 0.7554
0.7745 5.42 1200 0.9482 0.6972
0.6286 7.22 1600 1.0754 0.6750
0.5413 9.03 2000 0.9040 0.6405
0.4833 10.84 2400 0.9086 0.6116
0.4331 12.64 2800 0.9273 0.6283
0.4047 14.45 3200 1.0076 0.6138
0.3739 16.25 3600 0.9818 0.6018
0.3445 18.06 4000 0.9948 0.5952
0.3305 19.86 4400 0.9897 0.5834
0.3107 21.67 4800 1.0022 0.5751
0.2879 23.48 5200 1.0235 0.5744
0.2836 25.28 5600 1.0238 0.5765
0.2706 27.09 6000 1.0276 0.5694
0.2656 28.89 6400 1.0220 0.5697

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.2+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.0
Downloads last month
7
Safetensors
Model size
316M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for shivamtiwari2112/wav2vec2-large-xlsr-hindi

Finetuned
(194)
this model