whisper-small-hi / README.md
shripadbhat's picture
Update README.md
34c5545
metadata
language:
  - hi
license: apache-2.0
tags:
  - whisper-event
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_11_0
metrics:
  - wer
model-index:
  - name: Whisper Small Hindi - Shripad Bhat
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 11.0
          type: mozilla-foundation/common_voice_11_0
          config: hi
          split: test
          args: hi
        metrics:
          - name: Wer
            type: wer
            value: 21.451908746990714
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: FLEURS
          type: google/fleurs
          config: hi_in
          split: test
          args: hi
        metrics:
          - name: Wer
            type: wer
            value: 22.11

Whisper Small Hindi - Shripad Bhat

This model is a fine-tuned version of openai/whisper-small on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3909
  • Wer: 21.4519

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 50
  • training_steps: 1000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.4337 0.73 100 0.4874 47.5868
0.1894 1.47 200 0.3264 23.9482
0.1007 2.21 300 0.3101 22.5267
0.0984 2.94 400 0.3064 21.5723
0.0555 3.67 500 0.3325 22.0251
0.029 4.41 600 0.3439 21.4863
0.0163 5.15 700 0.3668 21.6468
0.0153 5.88 800 0.3756 21.4662
0.0081 6.62 900 0.3888 21.5035
0.0059 7.35 1000 0.3909 21.4519

Framework versions

  • Transformers 4.26.0.dev0
  • Pytorch 1.13.0+cu117
  • Datasets 2.7.1.dev0
  • Tokenizers 0.13.2