DNADebertaK6_Arabidopsis
This model is a fine-tuned version of on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.7194
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 600001
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
4.6174 | 6.12 | 20000 | 1.9257 |
1.8873 | 12.24 | 40000 | 1.8098 |
1.8213 | 18.36 | 60000 | 1.7952 |
1.8042 | 24.48 | 80000 | 1.7888 |
1.7945 | 30.6 | 100000 | 1.7861 |
1.7873 | 36.72 | 120000 | 1.7772 |
1.782 | 42.84 | 140000 | 1.7757 |
1.7761 | 48.96 | 160000 | 1.7632 |
1.7714 | 55.08 | 180000 | 1.7685 |
1.7677 | 61.2 | 200000 | 1.7568 |
1.7637 | 67.32 | 220000 | 1.7570 |
1.7585 | 73.44 | 240000 | 1.7442 |
1.7554 | 79.56 | 260000 | 1.7556 |
1.7515 | 85.68 | 280000 | 1.7505 |
1.7483 | 91.8 | 300000 | 1.7463 |
1.745 | 97.92 | 320000 | 1.7425 |
1.7427 | 104.04 | 340000 | 1.7425 |
1.7398 | 110.16 | 360000 | 1.7359 |
1.7377 | 116.28 | 380000 | 1.7369 |
1.7349 | 122.4 | 400000 | 1.7340 |
1.7325 | 128.52 | 420000 | 1.7313 |
1.731 | 134.64 | 440000 | 1.7256 |
1.7286 | 140.76 | 460000 | 1.7238 |
1.7267 | 146.88 | 480000 | 1.7324 |
1.7247 | 153.0 | 500000 | 1.7247 |
1.7228 | 159.12 | 520000 | 1.7185 |
1.7209 | 165.24 | 540000 | 1.7166 |
1.7189 | 171.36 | 560000 | 1.7206 |
1.7181 | 177.48 | 580000 | 1.7190 |
1.7159 | 183.6 | 600000 | 1.7194 |
Framework versions
- Transformers 4.19.2
- Pytorch 1.11.0
- Datasets 2.2.2
- Tokenizers 0.12.1
- Downloads last month
- 2
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.