DNADebertaK6_Worm
This model is a fine-tuned version of on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.6161
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 600001
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
4.5653 | 7.26 | 20000 | 1.8704 |
1.8664 | 14.53 | 40000 | 1.7762 |
1.7803 | 21.79 | 60000 | 1.7429 |
1.7502 | 29.06 | 80000 | 1.7305 |
1.7329 | 36.32 | 100000 | 1.7185 |
1.7191 | 43.59 | 120000 | 1.7073 |
1.7065 | 50.85 | 140000 | 1.6925 |
1.6945 | 58.12 | 160000 | 1.6877 |
1.6862 | 65.38 | 180000 | 1.6792 |
1.6788 | 72.65 | 200000 | 1.6712 |
1.6729 | 79.91 | 220000 | 1.6621 |
1.6679 | 87.18 | 240000 | 1.6608 |
1.6632 | 94.44 | 260000 | 1.6586 |
1.6582 | 101.71 | 280000 | 1.6585 |
1.6551 | 108.97 | 300000 | 1.6564 |
1.6507 | 116.24 | 320000 | 1.6449 |
1.6481 | 123.5 | 340000 | 1.6460 |
1.6448 | 130.77 | 360000 | 1.6411 |
1.6425 | 138.03 | 380000 | 1.6408 |
1.6387 | 145.3 | 400000 | 1.6358 |
1.6369 | 152.56 | 420000 | 1.6373 |
1.6337 | 159.83 | 440000 | 1.6364 |
1.6312 | 167.09 | 460000 | 1.6303 |
1.6298 | 174.36 | 480000 | 1.6346 |
1.6273 | 181.62 | 500000 | 1.6272 |
1.6244 | 188.88 | 520000 | 1.6268 |
1.6225 | 196.15 | 540000 | 1.6295 |
1.6207 | 203.41 | 560000 | 1.6206 |
1.6186 | 210.68 | 580000 | 1.6277 |
1.6171 | 217.94 | 600000 | 1.6161 |
Framework versions
- Transformers 4.19.2
- Pytorch 1.11.0
- Datasets 2.2.2
- Tokenizers 0.12.1
- Downloads last month
- 0
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.