metadata
language:
- en
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
datasets:
- simodo79/Vaudeville
metrics:
- wer
model-index:
- name: Whisper Small Vdv
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Vaudeville
type: simodo79/Vaudeville
config: default
split: None
args: 'config: en, split: test'
metrics:
- name: Wer
type: wer
value: 0
pipeline_tag: automatic-speech-recognition
library_name: transformers
Whisper Small Vdv
This model is a fine-tuned version of openai/whisper-small on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set:
- Loss: 0.0000
- Wer: 0.0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.0 | 500.0 | 1000 | 0.0000 | 0.0 |
0.0 | 1000.0 | 2000 | 0.0000 | 0.0 |
0.0 | 1500.0 | 3000 | 0.0000 | 0.0 |
0.0 | 2000.0 | 4000 | 0.0000 | 0.0 |
0.0 | 2500.0 | 5000 | 0.0000 | 0.0 |
Framework versions
- Transformers 4.43.3
- Pytorch 1.12.0
- Datasets 2.20.0
- Tokenizers 0.19.1