Edit model card

bert-base-uncased-sst-2-32-87

This model is a fine-tuned version of bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9995
  • Accuracy: 0.875

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 150

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 2 1.3036 0.8281
No log 2.0 4 1.3032 0.8281
No log 3.0 6 1.3022 0.8281
No log 4.0 8 1.3002 0.8438
0.6888 5.0 10 1.2981 0.8438
0.6888 6.0 12 1.2958 0.8438
0.6888 7.0 14 1.2937 0.8438
0.6888 8.0 16 1.2916 0.8438
0.6888 9.0 18 1.2896 0.8281
0.6235 10.0 20 1.2880 0.8281
0.6235 11.0 22 1.2862 0.8281
0.6235 12.0 24 1.2847 0.8281
0.6235 13.0 26 1.2833 0.8281
0.6235 14.0 28 1.2827 0.8281
0.6224 15.0 30 1.2813 0.8281
0.6224 16.0 32 1.2788 0.8281
0.6224 17.0 34 1.2739 0.8281
0.6224 18.0 36 1.2670 0.8281
0.6224 19.0 38 1.2583 0.8281
0.5366 20.0 40 1.2501 0.8281
0.5366 21.0 42 1.2366 0.8281
0.5366 22.0 44 1.2258 0.8281
0.5366 23.0 46 1.2148 0.8281
0.5366 24.0 48 1.2069 0.8281
0.3634 25.0 50 1.1973 0.8281
0.3634 26.0 52 1.1888 0.8281
0.3634 27.0 54 1.1754 0.8281
0.3634 28.0 56 1.1583 0.8281
0.3634 29.0 58 1.1462 0.8281
0.3447 30.0 60 1.1399 0.8281
0.3447 31.0 62 1.1399 0.8281
0.3447 32.0 64 1.1328 0.8281
0.3447 33.0 66 1.1304 0.8281
0.3447 34.0 68 1.1275 0.8281
0.2231 35.0 70 1.1185 0.8281
0.2231 36.0 72 1.1059 0.8281
0.2231 37.0 74 1.0901 0.8281
0.2231 38.0 76 1.0711 0.8281
0.2231 39.0 78 1.0516 0.8281
0.0925 40.0 80 1.0339 0.8281
0.0925 41.0 82 1.0151 0.8281
0.0925 42.0 84 0.9910 0.8281
0.0925 43.0 86 0.9616 0.8281
0.0925 44.0 88 0.9422 0.8281
0.024 45.0 90 0.9346 0.8281
0.024 46.0 92 0.9374 0.8281
0.024 47.0 94 0.9413 0.8438
0.024 48.0 96 0.9460 0.8438
0.024 49.0 98 0.9470 0.8438
0.0161 50.0 100 0.9483 0.8438
0.0161 51.0 102 0.9505 0.8438
0.0161 52.0 104 0.9534 0.8438
0.0161 53.0 106 0.9565 0.8438
0.0161 54.0 108 0.9591 0.8438
0.0003 55.0 110 0.9613 0.8438
0.0003 56.0 112 0.9609 0.8438
0.0003 57.0 114 0.9606 0.8438
0.0003 58.0 116 0.9597 0.8438
0.0003 59.0 118 0.9582 0.8438
0.0003 60.0 120 0.9572 0.8438
0.0003 61.0 122 0.9557 0.8438
0.0003 62.0 124 0.9563 0.8438
0.0003 63.0 126 0.9514 0.8438
0.0003 64.0 128 0.9487 0.8438
0.0006 65.0 130 0.9472 0.8438
0.0006 66.0 132 0.9472 0.8438
0.0006 67.0 134 0.9486 0.8438
0.0006 68.0 136 0.9471 0.8438
0.0006 69.0 138 0.9569 0.8438
0.0008 70.0 140 0.9658 0.8438
0.0008 71.0 142 0.9732 0.8438
0.0008 72.0 144 0.9792 0.8438
0.0008 73.0 146 0.9836 0.8438
0.0008 74.0 148 0.9813 0.8438
0.0003 75.0 150 0.9750 0.8281
0.0003 76.0 152 0.9712 0.8281
0.0003 77.0 154 0.9636 0.8281
0.0003 78.0 156 0.9525 0.8281
0.0003 79.0 158 0.9410 0.8281
0.001 80.0 160 0.9323 0.8438
0.001 81.0 162 0.9256 0.8438
0.001 82.0 164 0.9293 0.8438
0.001 83.0 166 0.9429 0.8281
0.001 84.0 168 0.9565 0.8281
0.0002 85.0 170 0.9687 0.8281
0.0002 86.0 172 0.9796 0.8281
0.0002 87.0 174 0.9900 0.8281
0.0002 88.0 176 0.9985 0.8281
0.0002 89.0 178 1.0049 0.8281
0.0002 90.0 180 1.0099 0.8281
0.0002 91.0 182 1.0139 0.8281
0.0002 92.0 184 1.0170 0.8281
0.0002 93.0 186 1.0196 0.8281
0.0002 94.0 188 1.0218 0.8281
0.0002 95.0 190 1.0236 0.8281
0.0002 96.0 192 1.0250 0.8281
0.0002 97.0 194 1.0258 0.8281
0.0002 98.0 196 1.0262 0.8281
0.0002 99.0 198 1.0266 0.8281
0.0002 100.0 200 1.0274 0.8281
0.0002 101.0 202 1.0280 0.8281
0.0002 102.0 204 1.0286 0.8281
0.0002 103.0 206 1.0293 0.8281
0.0002 104.0 208 1.0298 0.8281
0.0001 105.0 210 1.0303 0.8281
0.0001 106.0 212 1.0309 0.8281
0.0001 107.0 214 1.0315 0.8281
0.0001 108.0 216 1.0318 0.8281
0.0001 109.0 218 1.0182 0.8281
0.0025 110.0 220 0.9797 0.8281
0.0025 111.0 222 0.9486 0.8438
0.0025 112.0 224 0.9379 0.8594
0.0025 113.0 226 0.9381 0.8594
0.0025 114.0 228 0.9421 0.8594
0.0002 115.0 230 0.9449 0.8594
0.0002 116.0 232 0.9477 0.8594
0.0002 117.0 234 0.9504 0.8594
0.0002 118.0 236 0.9531 0.8594
0.0002 119.0 238 0.9563 0.8594
0.0002 120.0 240 0.9597 0.8438
0.0002 121.0 242 0.9630 0.8438
0.0002 122.0 244 0.9902 0.8438
0.0002 123.0 246 0.9989 0.8438
0.0002 124.0 248 1.0010 0.8281
0.0007 125.0 250 1.0085 0.8438
0.0007 126.0 252 1.0163 0.8438
0.0007 127.0 254 1.0225 0.8438
0.0007 128.0 256 1.0279 0.8594
0.0007 129.0 258 1.0322 0.8594
0.0001 130.0 260 1.0336 0.8594
0.0001 131.0 262 1.0348 0.8594
0.0001 132.0 264 1.0358 0.8594
0.0001 133.0 266 1.0367 0.8594
0.0001 134.0 268 1.0300 0.8438
0.0005 135.0 270 1.0190 0.8438
0.0005 136.0 272 1.0185 0.8281
0.0005 137.0 274 1.0266 0.8438
0.0005 138.0 276 1.0311 0.8438
0.0005 139.0 278 1.0318 0.8438
0.0001 140.0 280 1.0306 0.8438
0.0001 141.0 282 1.0295 0.8281
0.0001 142.0 284 1.0286 0.8438
0.0001 143.0 286 1.0278 0.8438
0.0001 144.0 288 1.0272 0.8438
0.0001 145.0 290 1.0268 0.8438
0.0001 146.0 292 1.0266 0.8438
0.0001 147.0 294 1.0264 0.8438
0.0001 148.0 296 1.0265 0.8438
0.0001 149.0 298 0.9917 0.8594
0.0002 150.0 300 0.9995 0.875

Framework versions

  • Transformers 4.32.0.dev0
  • Pytorch 2.0.1+cu118
  • Datasets 2.4.0
  • Tokenizers 0.13.3
Downloads last month
5
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for simonycl/bert-base-uncased-sst-2-32-87

Finetuned
(2061)
this model