metadata
license: cc-by-nc-4.0
base_model: facebook/mms-1b-all
tags:
- generated_from_trainer
datasets:
- common_voice_16_0
metrics:
- wer
model-index:
- name: breeze-listen-w2v2-id
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: common_voice_16_0
type: common_voice_16_0
config: id
split: test
args: id
metrics:
- name: Wer
type: wer
value: 0.1455760839290688
breeze-listen-w2v2-id
This model is a fine-tuned version of facebook/mms-1b-all on the common_voice_16_0 dataset. It achieves the following results on the evaluation set:
- Loss: 0.1253
- Wer: 0.1456
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 4.0
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
No log | 0.1 | 200 | 3.2671 | 1.0 |
No log | 0.19 | 400 | 2.8741 | 1.0007 |
3.8381 | 0.29 | 600 | 2.7612 | 0.9955 |
3.8381 | 0.38 | 800 | 2.6333 | 0.9981 |
2.6996 | 0.48 | 1000 | 2.3074 | 0.9771 |
2.6996 | 0.58 | 1200 | 2.0155 | 0.9286 |
2.6996 | 0.67 | 1400 | 1.9155 | 0.8947 |
2.2919 | 0.77 | 1600 | 1.6412 | 0.8814 |
2.2919 | 0.87 | 1800 | 1.4531 | 0.8285 |
1.5872 | 0.96 | 2000 | 0.1813 | 0.2060 |
1.5872 | 1.06 | 2200 | 0.1636 | 0.1806 |
1.5872 | 1.15 | 2400 | 0.1558 | 0.1744 |
0.2659 | 1.25 | 2600 | 0.1522 | 0.1647 |
0.2659 | 1.35 | 2800 | 0.1553 | 0.1664 |
0.2436 | 1.44 | 3000 | 0.1841 | 0.1961 |
0.2436 | 1.54 | 3200 | 0.1419 | 0.1640 |
0.2436 | 1.64 | 3400 | 0.1456 | 0.1714 |
0.2464 | 1.73 | 3600 | 0.1402 | 0.1607 |
0.2464 | 1.83 | 3800 | 0.1345 | 0.1528 |
0.2292 | 1.92 | 4000 | 0.1342 | 0.1556 |
0.2292 | 2.02 | 4200 | 0.1334 | 0.1552 |
0.2292 | 2.12 | 4400 | 0.1352 | 0.1543 |
0.2209 | 2.21 | 4600 | 0.1350 | 0.1538 |
0.2209 | 2.31 | 4800 | 0.1342 | 0.1530 |
0.2136 | 2.41 | 5000 | 0.1320 | 0.1540 |
0.2136 | 2.5 | 5200 | 0.1369 | 0.1569 |
0.2136 | 2.6 | 5400 | 0.1314 | 0.1517 |
0.2154 | 2.69 | 5600 | 0.1304 | 0.1506 |
0.2154 | 2.79 | 5800 | 0.1320 | 0.1507 |
0.2123 | 2.89 | 6000 | 0.1319 | 0.1524 |
0.2123 | 2.98 | 6200 | 0.1292 | 0.1524 |
0.2123 | 3.08 | 6400 | 0.1283 | 0.1488 |
0.2109 | 3.18 | 6600 | 0.1258 | 0.1492 |
0.2109 | 3.27 | 6800 | 0.1291 | 0.1488 |
0.2103 | 3.37 | 7000 | 0.1278 | 0.1484 |
0.2103 | 3.46 | 7200 | 0.1250 | 0.1478 |
0.2103 | 3.56 | 7400 | 0.1277 | 0.1482 |
0.1986 | 3.66 | 7600 | 0.1256 | 0.1476 |
0.1986 | 3.75 | 7800 | 0.1258 | 0.1468 |
0.1954 | 3.85 | 8000 | 0.1256 | 0.1465 |
0.1954 | 3.95 | 8200 | 0.1253 | 0.1456 |
Framework versions
- Transformers 4.38.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.16.1
- Tokenizers 0.15.1