finetuned-bert / README.md
Sitthichok Paugchan
Librarian Bot: Add base_model information to model (#1)
5cc96bb
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - glue
metrics:
  - accuracy
  - f1
base_model: bert-base-cased
model-index:
  - name: finetuned-bert
    results:
      - task:
          type: text-classification
          name: Text Classification
        dataset:
          name: glue
          type: glue
          config: mrpc
          split: validation
          args: mrpc
        metrics:
          - type: accuracy
            value: 0.8627450980392157
            name: Accuracy
          - type: f1
            value: 0.9037800687285222
            name: F1

finetuned-bert

This model is a fine-tuned version of bert-base-cased on the glue dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4431
  • Accuracy: 0.8627
  • F1: 0.9038

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3.0

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
0.5331 1.0 230 0.3900 0.8333 0.8870
0.2878 2.0 460 0.3675 0.8505 0.8935
0.1395 3.0 690 0.4431 0.8627 0.9038

Framework versions

  • Transformers 4.29.2
  • Pytorch 2.0.1+cu118
  • Datasets 2.12.0
  • Tokenizers 0.13.3