metadata
library_name: transformers
license: apache-2.0
base_model: facebook/wav2vec2-base
tags:
- generated_from_trainer
datasets:
- minds14
metrics:
- accuracy
model-index:
- name: test_model_dir
results:
- task:
name: Audio Classification
type: audio-classification
dataset:
name: minds14
type: minds14
config: en-US
split: train
args: en-US
metrics:
- name: Accuracy
type: accuracy
value: 0.08849557522123894
test_model_dir
This model is a fine-tuned version of facebook/wav2vec2-base on the minds14 dataset. It achieves the following results on the evaluation set:
- Loss: 2.7181
- Accuracy: 0.0885
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 2 | 2.6433 | 0.0354 |
No log | 2.0 | 4 | 2.6427 | 0.0265 |
No log | 3.0 | 6 | 2.6412 | 0.0619 |
No log | 4.0 | 8 | 2.6391 | 0.0885 |
2.6378 | 5.0 | 10 | 2.6384 | 0.1239 |
2.6378 | 6.0 | 12 | 2.6380 | 0.0973 |
2.6378 | 7.0 | 14 | 2.6375 | 0.0708 |
2.6378 | 8.0 | 16 | 2.6415 | 0.0796 |
2.6378 | 9.0 | 18 | 2.6399 | 0.0531 |
2.6288 | 10.0 | 20 | 2.6450 | 0.0796 |
2.6288 | 11.0 | 22 | 2.6450 | 0.0619 |
2.6288 | 12.0 | 24 | 2.6452 | 0.0708 |
2.6288 | 13.0 | 26 | 2.6479 | 0.0708 |
2.6288 | 14.0 | 28 | 2.6496 | 0.0619 |
2.6185 | 15.0 | 30 | 2.6522 | 0.0796 |
2.6185 | 16.0 | 32 | 2.6558 | 0.0796 |
2.6185 | 17.0 | 34 | 2.6567 | 0.0708 |
2.6185 | 18.0 | 36 | 2.6572 | 0.0619 |
2.6185 | 19.0 | 38 | 2.6611 | 0.0619 |
2.6069 | 20.0 | 40 | 2.6629 | 0.0619 |
2.6069 | 21.0 | 42 | 2.6621 | 0.0531 |
2.6069 | 22.0 | 44 | 2.6663 | 0.0531 |
2.6069 | 23.0 | 46 | 2.6672 | 0.0442 |
2.6069 | 24.0 | 48 | 2.6645 | 0.0531 |
2.599 | 25.0 | 50 | 2.6670 | 0.0708 |
2.599 | 26.0 | 52 | 2.6692 | 0.0531 |
2.599 | 27.0 | 54 | 2.6653 | 0.0708 |
2.599 | 28.0 | 56 | 2.6669 | 0.0885 |
2.599 | 29.0 | 58 | 2.6797 | 0.0619 |
2.5767 | 30.0 | 60 | 2.6781 | 0.0354 |
2.5767 | 31.0 | 62 | 2.6861 | 0.0265 |
2.5767 | 32.0 | 64 | 2.6852 | 0.0442 |
2.5767 | 33.0 | 66 | 2.6733 | 0.0442 |
2.5767 | 34.0 | 68 | 2.6881 | 0.0708 |
2.5771 | 35.0 | 70 | 2.6800 | 0.0708 |
2.5771 | 36.0 | 72 | 2.6777 | 0.0619 |
2.5771 | 37.0 | 74 | 2.6761 | 0.0708 |
2.5771 | 38.0 | 76 | 2.6657 | 0.0619 |
2.5771 | 39.0 | 78 | 2.6667 | 0.0708 |
2.5636 | 40.0 | 80 | 2.6681 | 0.0708 |
2.5636 | 41.0 | 82 | 2.6649 | 0.0796 |
2.5636 | 42.0 | 84 | 2.6598 | 0.0796 |
2.5636 | 43.0 | 86 | 2.6627 | 0.0619 |
2.5636 | 44.0 | 88 | 2.6596 | 0.0796 |
2.5608 | 45.0 | 90 | 2.6511 | 0.0796 |
2.5608 | 46.0 | 92 | 2.6522 | 0.0708 |
2.5608 | 47.0 | 94 | 2.6610 | 0.0708 |
2.5608 | 48.0 | 96 | 2.6638 | 0.0531 |
2.5608 | 49.0 | 98 | 2.6642 | 0.0619 |
2.5432 | 50.0 | 100 | 2.6596 | 0.0796 |
2.5432 | 51.0 | 102 | 2.6675 | 0.0885 |
2.5432 | 52.0 | 104 | 2.6964 | 0.0885 |
2.5432 | 53.0 | 106 | 2.7030 | 0.0531 |
2.5432 | 54.0 | 108 | 2.7016 | 0.0531 |
2.5295 | 55.0 | 110 | 2.6918 | 0.0619 |
2.5295 | 56.0 | 112 | 2.6893 | 0.0619 |
2.5295 | 57.0 | 114 | 2.6936 | 0.0708 |
2.5295 | 58.0 | 116 | 2.6905 | 0.0885 |
2.5295 | 59.0 | 118 | 2.6838 | 0.0796 |
2.5207 | 60.0 | 120 | 2.6845 | 0.0708 |
2.5207 | 61.0 | 122 | 2.6896 | 0.0708 |
2.5207 | 62.0 | 124 | 2.6965 | 0.0796 |
2.5207 | 63.0 | 126 | 2.6971 | 0.1062 |
2.5207 | 64.0 | 128 | 2.6982 | 0.0973 |
2.5015 | 65.0 | 130 | 2.7037 | 0.0885 |
2.5015 | 66.0 | 132 | 2.7065 | 0.0973 |
2.5015 | 67.0 | 134 | 2.7078 | 0.0973 |
2.5015 | 68.0 | 136 | 2.7055 | 0.0973 |
2.5015 | 69.0 | 138 | 2.7023 | 0.0973 |
2.4869 | 70.0 | 140 | 2.6923 | 0.1062 |
2.4869 | 71.0 | 142 | 2.6906 | 0.1062 |
2.4869 | 72.0 | 144 | 2.6989 | 0.1062 |
2.4869 | 73.0 | 146 | 2.7078 | 0.0885 |
2.4869 | 74.0 | 148 | 2.7106 | 0.0973 |
2.4638 | 75.0 | 150 | 2.7117 | 0.0796 |
2.4638 | 76.0 | 152 | 2.7119 | 0.0796 |
2.4638 | 77.0 | 154 | 2.7153 | 0.0708 |
2.4638 | 78.0 | 156 | 2.7111 | 0.0708 |
2.4638 | 79.0 | 158 | 2.7086 | 0.0885 |
2.4408 | 80.0 | 160 | 2.7000 | 0.1150 |
2.4408 | 81.0 | 162 | 2.6915 | 0.1062 |
2.4408 | 82.0 | 164 | 2.6907 | 0.1062 |
2.4408 | 83.0 | 166 | 2.6908 | 0.0973 |
2.4408 | 84.0 | 168 | 2.6926 | 0.0796 |
2.4688 | 85.0 | 170 | 2.6984 | 0.1062 |
2.4688 | 86.0 | 172 | 2.7039 | 0.1062 |
2.4688 | 87.0 | 174 | 2.7053 | 0.0973 |
2.4688 | 88.0 | 176 | 2.7098 | 0.0796 |
2.4688 | 89.0 | 178 | 2.7100 | 0.0885 |
2.4379 | 90.0 | 180 | 2.7113 | 0.1062 |
2.4379 | 91.0 | 182 | 2.7121 | 0.0973 |
2.4379 | 92.0 | 184 | 2.7127 | 0.0973 |
2.4379 | 93.0 | 186 | 2.7162 | 0.0973 |
2.4379 | 94.0 | 188 | 2.7189 | 0.0973 |
2.4385 | 95.0 | 190 | 2.7199 | 0.0885 |
2.4385 | 96.0 | 192 | 2.7186 | 0.0796 |
2.4385 | 97.0 | 194 | 2.7182 | 0.0885 |
2.4385 | 98.0 | 196 | 2.7183 | 0.0885 |
2.4385 | 99.0 | 198 | 2.7182 | 0.0885 |
2.4402 | 100.0 | 200 | 2.7181 | 0.0885 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1