|
--- |
|
language: hi |
|
datasets: |
|
- common_voice |
|
- indic tts |
|
- iiith |
|
metrics: |
|
- wer |
|
tags: |
|
- audio |
|
- automatic-speech-recognition |
|
- speech |
|
- xlsr-fine-tuning-week |
|
license: apache-2.0 |
|
model-index: |
|
- name: Hindi XLSR Wav2Vec2 Large 53 |
|
results: |
|
- task: |
|
name: Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
- name: Common Voice hi |
|
type: common_voice |
|
args: hi |
|
- name: Indic IIT (IITM) |
|
type: indic |
|
args: hi |
|
- name: IIITH Indic Dataset |
|
type: iiith |
|
args: hi |
|
metrics: |
|
- name: Custom Dataset Hindi WER |
|
type: wer |
|
value: 17.23 |
|
- name: CommonVoice Hindi (Test) WER |
|
type: wer |
|
value: 56.46 |
|
--- |
|
|
|
# Wav2Vec2-Large-XLSR-53-Hindi |
|
|
|
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Hindi using the following datasets: |
|
- [Common Voice](https://huggingface.co/datasets/common_voice), |
|
- [Indic TTS- IITM](https://www.iitm.ac.in/donlab/tts/index.php) and |
|
- [IIITH - Indic Speech Datasets](http://speech.iiit.ac.in/index.php/research-svl/69.html) |
|
|
|
The Indic datasets are well balanced across gender and accents. However the CommonVoice dataset is skewed towards male voices |
|
|
|
|
|
Fine-tuned on facebook/wav2vec2-large-xlsr-53 using Hindi dataset :: 60 epochs >> 17.05% WER |
|
|
|
When using this model, make sure that your speech input is sampled at 16kHz. |
|
|
|
## Usage |
|
|
|
The model can be used directly (without a language model) as follows: |
|
|
|
```python |
|
import torch |
|
import torchaudio |
|
from datasets import load_dataset |
|
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor |
|
test_dataset = load_dataset("common_voice", "hi", split="test") |
|
|
|
processor = Wav2Vec2Processor.from_pretrained("skylord/wav2vec2-large-xlsr-hindi") |
|
model = Wav2Vec2ForCTC.from_pretrained("skylord/wav2vec2-large-xlsr-hindi") |
|
|
|
resampler = torchaudio.transforms.Resample(48_000, 16_000) |
|
|
|
# Preprocessing the datasets. |
|
# We need to read the aduio files as arrays |
|
def speech_file_to_array_fn(batch): |
|
speech_array, sampling_rate = torchaudio.load(batch["path"]) |
|
batch["speech"] = resampler(speech_array).squeeze().numpy() |
|
return batch |
|
|
|
test_dataset = test_dataset.map(speech_file_to_array_fn) |
|
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) |
|
|
|
with torch.no_grad(): |
|
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits |
|
|
|
predicted_ids = torch.argmax(logits, dim=-1) |
|
print("Prediction:", processor.batch_decode(predicted_ids)) |
|
print("Reference:", test_dataset["sentence"][:2]) |
|
``` |
|
## Predictions |
|
|
|
*Some good ones ..... * |
|
|
|
| Predictions | Reference | |
|
|-------|-------| |
|
|फिर वो सूरज तारे पहाड बारिश पदछड़ दिन रात शाम नदी बर्फ़ समुद्र धुंध हवा कुछ भी हो सकती है | फिर वो सूरज तारे पहाड़ बारिश पतझड़ दिन रात शाम नदी बर्फ़ समुद्र धुंध हवा कुछ भी हो सकती है | |
|
| इस कारण जंगल में बडी दूर स्थित राघव के आश्रम में लोघ कम आने लगे और अधिकांश भक्त सुंदर के आश्रम में जाने लगे | इस कारण जंगल में बड़ी दूर स्थित राघव के आश्रम में लोग कम आने लगे और अधिकांश भक्त सुन्दर के आश्रम में जाने लगे | |
|
| अपने बचन के अनुसार शुभमूर्त पर अनंत दक्षिणी पर्वत गया और मंत्रों का जप करके सरोवर में उतरा | अपने बचन के अनुसार शुभमुहूर्त पर अनंत दक्षिणी पर्वत गया और मंत्रों का जप करके सरोवर में उतरा | |
|
|
|
|
|
|
|
*Some crappy stuff .... * |
|
|
|
|
|
| Predictions | Reference | |
|
|-------|-------| |
|
| वस गनिल साफ़ है। | उसका दिल साफ़ है। | |
|
| चाय वा एक कुछ लैंगे हब | चायवाय कुछ लेंगे आप | |
|
| टॉम आधे है स्कूल हें है | टॉम अभी भी स्कूल में है | |
|
|
|
|
|
|
|
## Evaluation |
|
|
|
The model can be evaluated as follows on the following two datasets: |
|
1. Custom dataset created from 20% of Indic, IIITH and CV (test): WER 17.xx% |
|
2. CommonVoice Hindi test dataset: WER 56.xx% |
|
|
|
Links to the datasets are provided above (check the links at the start of the README) |
|
|
|
train-test csv files are shared on the following gdrive links: |
|
a. IIITH [train](https://storage.googleapis.com/indic-dataset/train_test_splits/iiit_hi_train.csv) [test](https://storage.googleapis.com/indic-dataset/train_test_splits/iiit_hi_test.csv) |
|
b. Indic TTS [train](https://storage.googleapis.com/indic-dataset/train_test_splits/indic_train_full.csv) [test](https://storage.googleapis.com/indic-dataset/train_test_splits/indic_test_full.csv) |
|
|
|
|
|
Update the audio_path as per your local file structure. |
|
|
|
```python |
|
import torch |
|
import torchaudio |
|
from datasets import load_dataset, load_metric |
|
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor |
|
import re |
|
|
|
## Load the datasets |
|
test_dataset = load_dataset("common_voice", "hi", split="test") |
|
|
|
indic = load_dataset("csv", data_files= {'train':"/workspace/data/hi2/indic_train_full.csv", |
|
"test": "/workspace/data/hi2/indic_test_full.csv"}, download_mode="force_redownload") |
|
iiith = load_dataset("csv", data_files= {"train": "/workspace/data/hi2/iiit_hi_train.csv", |
|
"test": "/workspace/data/hi2/iiit_hi_test.csv"}, download_mode="force_redownload") |
|
|
|
## Pre-process datasets and concatenate to create test dataset |
|
# Drop columns of common_voice |
|
split = ['train', 'test', 'validation', 'other', 'invalidated'] |
|
|
|
for sp in split: |
|
common_voice[sp] = common_voice[sp].remove_columns(['client_id', 'up_votes', 'down_votes', 'age', 'gender', 'accent', 'locale', 'segment']) |
|
|
|
common_voice = common_voice.rename_column('path', 'audio_path') |
|
common_voice = common_voice.rename_column('sentence', 'target_text') |
|
|
|
train_dataset = datasets.concatenate_datasets([indic['train'], iiith['train'], common_voice['train']]) |
|
test_dataset = datasets.concatenate_datasets([indic['test'], iiith['test'], common_voice['test'], common_voice['validation']]) |
|
|
|
## Load model from HF hub |
|
|
|
wer = load_metric("wer") |
|
|
|
processor = Wav2Vec2Processor.from_pretrained("skylord/wav2vec2-large-xlsr-hindi") |
|
model = Wav2Vec2ForCTC.from_pretrained("skylord/wav2vec2-large-xlsr-hindi") |
|
model.to("cuda") |
|
|
|
chars_to_ignore_regex = '[\,\?\.\!\-\'\;\:\"\“\%\‘\”\�Utrnle\_]' |
|
unicode_ignore_regex = r'[dceMaWpmFui\xa0\u200d]' # Some unwanted unicode chars |
|
resampler = torchaudio.transforms.Resample(48_000, 16_000) |
|
|
|
# Preprocessing the datasets. |
|
# We need to read the aduio files as arrays |
|
|
|
def speech_file_to_array_fn(batch): |
|
batch["target_text"] = re.sub(chars_to_ignore_regex, '', batch["target_text"]) |
|
batch["target_text"] = re.sub(unicode_ignore_regex, '', batch["target_text"]) |
|
|
|
speech_array, sampling_rate = torchaudio.load(batch["audio_path"]) |
|
batch["speech"] = resampler(speech_array).squeeze().numpy() |
|
return batch |
|
|
|
test_dataset = test_dataset.map(speech_file_to_array_fn) |
|
|
|
# Preprocessing the datasets. |
|
# We need to read the aduio files as arrays |
|
|
|
def evaluate(batch): |
|
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) |
|
with torch.no_grad(): |
|
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits |
|
pred_ids = torch.argmax(logits, dim=-1) |
|
batch["pred_strings"] = processor.batch_decode(pred_ids) |
|
return batch |
|
|
|
result = test_dataset.map(evaluate, batched=True, batch_size=8) |
|
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) |
|
``` |
|
|
|
**Test Result on custom dataset**: 17.23 % |
|
|
|
|
|
|
|
|
|
```python |
|
import torch |
|
import torchaudio |
|
from datasets import load_dataset, load_metric |
|
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor |
|
import re |
|
|
|
test_dataset = load_dataset("common_voice", "hi", split="test") |
|
wer = load_metric("wer") |
|
|
|
processor = Wav2Vec2Processor.from_pretrained("skylord/wav2vec2-large-xlsr-hindi") |
|
model = Wav2Vec2ForCTC.from_pretrained("skylord/wav2vec2-large-xlsr-hindi") |
|
model.to("cuda") |
|
|
|
chars_to_ignore_regex = '[\,\?\.\!\-\'\;\:\"\“\%\‘\”\�Utrnle\_]' |
|
unicode_ignore_regex = r'[dceMaWpmFui\xa0\u200d]' # Some unwanted unicode chars |
|
resampler = torchaudio.transforms.Resample(48_000, 16_000) |
|
|
|
# Preprocessing the datasets. |
|
# We need to read the aduio files as arrays |
|
|
|
def speech_file_to_array_fn(batch): |
|
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).sub(unicode_ignore_regex, '', batch["sentence"]) |
|
speech_array, sampling_rate = torchaudio.load(batch["path"]) |
|
batch["speech"] = resampler(speech_array).squeeze().numpy() |
|
return batch |
|
|
|
test_dataset = test_dataset.map(speech_file_to_array_fn) |
|
|
|
# Preprocessing the datasets. |
|
# We need to read the aduio files as arrays |
|
|
|
def evaluate(batch): |
|
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) |
|
with torch.no_grad(): |
|
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits |
|
pred_ids = torch.argmax(logits, dim=-1) |
|
batch["pred_strings"] = processor.batch_decode(pred_ids) |
|
return batch |
|
|
|
result = test_dataset.map(evaluate, batched=True, batch_size=8) |
|
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) |
|
``` |
|
|
|
**Test Result on CommonVoice**: 56.46 % |
|
|
|
|
|
|
|
## Training |
|
|
|
The Common Voice `train`, `validation`, datasets were used for training as well as |
|
|
|
The script used for training & wandb dashboard can be found [here](https://wandb.ai/thinkevolve/huggingface/reports/Project-Hindi-XLSR-Large--Vmlldzo2MTI2MTQ) |
|
|