Files changed (1) hide show
  1. README.md +79 -165
README.md CHANGED
@@ -1,201 +1,115 @@
1
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  library_name: transformers
3
- tags: []
 
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
10
 
 
11
 
12
- ## Model Details
13
 
14
- ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
29
 
30
- <!-- Provide the basic links for the model. -->
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
- ## Uses
 
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
 
 
 
 
 
 
 
 
 
 
 
 
 
 
39
 
40
- ### Direct Use
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
 
44
- [More Information Needed]
45
 
46
- ### Downstream Use [optional]
47
 
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
 
 
49
 
50
- [More Information Needed]
51
 
52
- ### Out-of-Scope Use
 
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
 
56
- [More Information Needed]
57
 
58
- ## Bias, Risks, and Limitations
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
 
62
- [More Information Needed]
 
63
 
64
- ### Recommendations
65
 
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
 
 
 
 
67
 
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
 
70
- ## How to Get Started with the Model
 
 
 
 
71
 
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
200
 
 
201
 
 
 
1
  ---
2
+ datasets:
3
+ - uonlp/CulturaX
4
+ - l3cube-pune/MarathiNLP
5
+ # - https://ai4bharat.iitm.ac.in//samanantar/
6
+
7
+ language:
8
+ - mr
9
+ metrics:
10
+ - accuracy
11
+ tags:
12
+ - marathi
13
+ - sentiment analysis
14
+ - reading comprehension
15
+ - paraphrasing
16
+ - translation
17
  library_name: transformers
18
+ pipeline_tag: text-generation
19
+ license: llama2
20
  ---
21
 
22
+ # Misal-7B-base-v0.1
23
 
24
+ Built by - [smallstep.ai](https://smallstep.ai/)
25
 
26
+ ## What is Misal?
27
 
28
+ Misal 7B, a pretrained and instruction tuned large language model based on Meta’s Llama 7B architecture exclusively for Marathi.
29
 
30
+ ## Making of Misal?
31
 
32
+ Detailed blog [here](https://smallstep.ai/making-misal).
33
 
 
34
 
35
+ ## Pretraining :
36
 
37
+ During the pretraining phase of our large language model, the model was exposed to a vast corpus of text data comprising approximately 2 billion Marathi tokens. This corpus primarily consisted of newspaper data spanning the years 2016 to 2022, sourced primarily from the CulturaX dataset. In addition to this, we supplemented our training data with additional sources such as l3cube, ai4bharat, and other internet-based datasets.
 
 
 
 
 
 
38
 
39
+ ![image/png](https://framerusercontent.com/images/JWniDgAly6SFTvfdHtff0cLcnWY.png?scale-down-to=1024)
40
 
41
+ Our model was pretrained using a single A100 80GB GPU on the QBlocks platform. We chose bfloat16 as training precision due to stability issues with float16 precision.
42
 
43
+ We used Parameter efficient finetuning for pretraining, using Low Rank Adaptation (LoRA), to achieve a training loss of approximately 2.8 after training for almost 2 days.
 
 
44
 
45
+ ```python
46
+ # LoRA config
47
 
48
+ peft:
49
+ r: 64
50
+ lora_alpha: 128
51
+ target_modules:
52
+ [
53
+ "q_proj", "v_proj",
54
+ "k_proj", "o_proj",
55
+ "gate_proj", "up_proj",
56
+ "down_proj",
57
+ ]
58
+ lora_dropout: 0.05
59
+ bias: "none"
60
+ task_type: "CAUSAL_LM"
61
+ modules_to_save: ["embed_tokens", "lm_head"]
62
+ ```
63
 
64
+ ## License
65
 
66
+ The model inherits the license from meta-llama/Llama-2-7b.
67
 
68
+ ## Usage
69
 
70
+ ### Installation
71
 
72
+ ```bash
73
+ pip install transformers accelerate
74
+ ```
75
 
76
+ ### Prompt
77
 
78
+ ```python
79
+ आपण एक मदतगार, आदरणीय आणि प्रामाणिक सहाय्यक आहात.नेहमी शक्य तितकी उपयुक्त उत्तर द्या. तुमची उत्तरे हानिकारक, अनैतिक, वर्णद्वेषी, लैंगिकतावादी, हानिकारक, धोकादायक किंवा बेकायदेशीर नसावीत. कृपया खात्री करा की तुमची उत्तरे सामाजिक दृष्टिकोनाने निष्पक्ष आणि सकारात्मक स्वरूपाची आहेत. जर एखाद्या प्रश्नाला काही अर्थ नसेल किंवा वस्तुस्थितीशी सुसंगती नसेल, तर उत्तर देण्याऐवजी काहीतरी बरोबर का नाही हे स्पष्ट करा. तुम्हाला एखाद्या प्रश्नाचे उत्तर माहित नसल्यास, कृपया चुकीची माहिती देऊ नये.
80
 
81
+ ### Instruction:
82
 
83
+ <instruction>
84
 
85
+ ### Input:
86
 
87
+ <input data>
88
 
89
+ ### Response:
90
+ ```
91
 
92
+ ### PyTorch
93
 
94
+ ```python
95
+ from transformers import AutoModelForCausalLM, AutoTokenizer
96
+ device = "cuda"
97
+ model = AutoModelForCausalLM.from_pretrained("smallstepai/Misal-7B-instruct-v0.1", torch_dtype=torch.bfloat16, device_map='auto')
98
+ tokenizer = AutoTokenizer.from_pretrained("smallstepai/Misal-7B-instruct-v0.1")
99
 
100
+ def ask_misal(model, tokenizer, instruction, inputs='', system_prompt='', max_new_tokens=200, device='cuda'):
101
 
102
+ ip = dict(system_prompt=system_prompt, instruction=instruction, inputs=inputs)
103
+ model_inputs = tokenizer.apply_chat_template(ip, return_tensors='pt')
104
+ outputs = model.generate(model_inputs.to(device), max_new_tokens=max_new_tokens)
105
+ response = tokenizer.decode(outputs[0]).split('### Response:')[1].strip()
106
+ return response
107
 
108
+ instruction="सादरीकरण कसे करावे?"
109
+ resp = ask_misal(model, tokenizer, instruction=instruction, max_new_tokens=1024)
110
+ print(resp)
111
+ ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
112
 
113
+ ### Team
114
 
115
+ Sagar Sarkale, Abhijeet Katte, Prasad Mane, Shravani Chavan