smartgmin's picture
Upload TFViTForImageClassification
4705cc3 verified
|
raw
history blame
3.23 kB
metadata
library_name: transformers
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
  - generated_from_keras_callback
model-index:
  - name: Entrnal_5class_agumm_last_newV7_model
    results: []

Entrnal_5class_agumm_last_newV7_model

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.0959
  • Train Accuracy: 0.9365
  • Train Top-3-accuracy: 0.9913
  • Validation Loss: 0.3424
  • Validation Accuracy: 0.9390
  • Validation Top-3-accuracy: 0.9917
  • Epoch: 9

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 620, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
  • training_precision: float32

Training results

Train Loss Train Accuracy Train Top-3-accuracy Validation Loss Validation Accuracy Validation Top-3-accuracy Epoch
1.1895 0.4833 0.8342 0.8125 0.6525 0.9200 0
0.5511 0.7329 0.9448 0.4587 0.7829 0.9601 1
0.3174 0.8164 0.9677 0.3909 0.8395 0.9735 2
0.2299 0.8576 0.9772 0.3711 0.8709 0.9802 3
0.1699 0.8824 0.9824 0.3564 0.8920 0.9842 4
0.1344 0.9003 0.9856 0.3389 0.9073 0.9865 5
0.1187 0.9131 0.9875 0.3391 0.9183 0.9884 6
0.1060 0.9229 0.9891 0.3424 0.9267 0.9898 7
0.0992 0.9304 0.9903 0.3426 0.9334 0.9908 8
0.0959 0.9365 0.9913 0.3424 0.9390 0.9917 9

Framework versions

  • Transformers 4.44.2
  • TensorFlow 2.15.1
  • Datasets 3.0.0
  • Tokenizers 0.19.1