smartgmin's picture
Upload TFViTForImageClassification
f0742ad verified
|
raw
history blame
2.86 kB
metadata
library_name: transformers
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
  - generated_from_keras_callback
model-index:
  - name: Entrnal_eyes_data_5class_RVO_resize_224_model
    results: []

Entrnal_eyes_data_5class_RVO_resize_224_model

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.0870
  • Train Accuracy: 0.9372
  • Train Top-3-accuracy: 0.9944
  • Validation Loss: 0.2468
  • Validation Accuracy: 0.9406
  • Validation Top-3-accuracy: 0.9948
  • Epoch: 6

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 784, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
  • training_precision: float32

Training results

Train Loss Train Accuracy Train Top-3-accuracy Validation Loss Validation Accuracy Validation Top-3-accuracy Epoch
0.9323 0.6128 0.8870 0.4850 0.7838 0.9644 0
0.3507 0.8315 0.9758 0.3223 0.8593 0.9822 1
0.2174 0.8787 0.9858 0.2710 0.8925 0.9883 2
0.1573 0.9034 0.9899 0.3544 0.9108 0.9911 3
0.1231 0.9172 0.9920 0.2527 0.9235 0.9928 4
0.0963 0.9287 0.9934 0.2485 0.9333 0.9940 5
0.0870 0.9372 0.9944 0.2468 0.9406 0.9948 6

Framework versions

  • Transformers 4.44.2
  • TensorFlow 2.15.1
  • Datasets 3.0.0
  • Tokenizers 0.19.1