smartgmin's picture
Upload TFViTForImageClassification
568e51a verified
metadata
library_name: transformers
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
  - generated_from_keras_callback
model-index:
  - name: eyesCare_firstTryEntrnal_mix_model-1
    results: []

eyesCare_firstTryEntrnal_mix_model-1

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.0066
  • Train Accuracy: 0.8616
  • Train Top-3-accuracy: 0.9785
  • Validation Loss: 1.9942
  • Validation Accuracy: 0.8627
  • Validation Top-3-accuracy: 0.9787
  • Epoch: 29

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 4e-05, 'decay_steps': 4950, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.001}
  • training_precision: float32

Training results

Train Loss Train Accuracy Train Top-3-accuracy Validation Loss Validation Accuracy Validation Top-3-accuracy Epoch
1.3981 0.3217 0.7428 1.1812 0.4135 0.8283 0
1.1137 0.4540 0.8600 1.0974 0.4763 0.8802 1
0.9296 0.5034 0.8955 1.0739 0.5231 0.9065 2
0.7444 0.5473 0.9155 1.1126 0.5663 0.9225 3
0.5534 0.5880 0.9285 1.1673 0.6076 0.9342 4
0.4105 0.6261 0.9387 1.1547 0.6422 0.9428 5
0.2830 0.6586 0.9462 1.3119 0.6729 0.9493 6
0.1984 0.6874 0.9519 1.3821 0.6990 0.9540 7
0.1224 0.7104 0.9559 1.4778 0.7213 0.9576 8
0.1021 0.7313 0.9591 1.5426 0.7400 0.9603 9
0.1017 0.7478 0.9615 1.6387 0.7545 0.9625 10
0.0646 0.7613 0.9635 1.6226 0.7678 0.9644 11
0.0500 0.7738 0.9654 1.6646 0.7793 0.9662 12
0.0571 0.7843 0.9669 1.7492 0.7890 0.9675 13
0.0248 0.7935 0.9682 1.6984 0.7978 0.9689 14
0.0185 0.8020 0.9695 1.7302 0.8059 0.9701 15
0.0145 0.8096 0.9707 1.7669 0.8129 0.9712 16
0.0129 0.8163 0.9718 1.7972 0.8193 0.9722 17
0.0116 0.8223 0.9727 1.8276 0.8251 0.9732 18
0.0106 0.8277 0.9736 1.8544 0.8302 0.9739 19
0.0098 0.8326 0.9743 1.8792 0.8348 0.9746 20
0.0091 0.8370 0.9749 1.9012 0.8391 0.9752 21
0.0085 0.8411 0.9755 1.9212 0.8430 0.9758 22
0.0080 0.8448 0.9761 1.9391 0.8465 0.9763 23
0.0076 0.8482 0.9766 1.9547 0.8498 0.9768 24
0.0073 0.8513 0.9770 1.9682 0.8527 0.9772 25
0.0070 0.8542 0.9774 1.9789 0.8555 0.9777 26
0.0068 0.8568 0.9778 1.9871 0.8580 0.9780 27
0.0067 0.8593 0.9782 1.9924 0.8605 0.9784 28
0.0066 0.8616 0.9785 1.9942 0.8627 0.9787 29

Framework versions

  • Transformers 4.44.2
  • TensorFlow 2.15.0
  • Datasets 2.21.0
  • Tokenizers 0.19.1