smartgmin's picture
Upload TFViTForImageClassification
1d485c7 verified
metadata
library_name: transformers
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
  - generated_from_keras_callback
model-index:
  - name: traynothein_resize_treeclasss
    results: []

traynothein_resize_treeclasss

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.0426
  • Train Accuracy: 0.9814
  • Train Top-3-accuracy: 1.0
  • Validation Loss: 0.0803
  • Validation Accuracy: 0.9823
  • Validation Top-3-accuracy: 1.0
  • Epoch: 6

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 504, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
  • training_precision: float32

Training results

Train Loss Train Accuracy Train Top-3-accuracy Validation Loss Validation Accuracy Validation Top-3-accuracy Epoch
0.4021 0.8416 1.0 0.1892 0.9342 1.0 0
0.1232 0.9479 1.0 0.1078 0.9574 1.0 1
0.0852 0.9635 1.0 0.1014 0.9678 1.0 2
0.0597 0.9712 1.0 0.0798 0.9740 1.0 3
0.0549 0.9761 1.0 0.0891 0.9777 1.0 4
0.0485 0.9790 1.0 0.0754 0.9803 1.0 5
0.0426 0.9814 1.0 0.0803 0.9823 1.0 6

Framework versions

  • Transformers 4.44.2
  • TensorFlow 2.15.1
  • Datasets 3.0.0
  • Tokenizers 0.19.1