distilbert_v1 / README.md
snikhiel's picture
Training in progress epoch 6
b05106f
|
raw
history blame
2.19 kB
metadata
license: apache-2.0
base_model: distilbert/distilbert-base-uncased
tags:
  - generated_from_keras_callback
model-index:
  - name: snikhiel/distilbert_v1
    results: []

snikhiel/distilbert_v1

This model is a fine-tuned version of distilbert/distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.2729
  • Validation Loss: 0.4048
  • Train Accuracy: 0.9068
  • Epoch: 6

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 3125, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
  • training_precision: float32

Training results

Train Loss Validation Loss Train Accuracy Epoch
3.0587 1.7529 0.6922 0
1.1574 0.7906 0.8510 1
0.5728 0.5193 0.8857 2
0.3732 0.4324 0.8971 3
0.2934 0.4048 0.9068 4
0.2737 0.4048 0.9068 5
0.2729 0.4048 0.9068 6

Framework versions

  • Transformers 4.38.2
  • TensorFlow 2.15.0
  • Datasets 2.18.0
  • Tokenizers 0.15.2