whisper-medium-ca / README.md
jordimas's picture
Link
e1d2b4e
metadata
license: apache-2.0
tags:
  - generated_from_trainer
  - hf-asr-leaderboard
  - whisper-event
metrics:
  - wer
model-index:
  - name: openai/whisper-medium
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: mozilla-foundation/common_voice_11_0 ca
          type: mozilla-foundation/common_voice_11_0
          args: 'config: ml, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 8.282966640983934

openai/whisper-medium

This is an automatic speech recognition model that also does punctuation and casing. This model is for research only, we do not recommend using this model on production environments. See our learnings when training these models.

This model is a fine-tuned version of openai/whisper-medium on the mozilla-foundation/common_voice_11_0 ca dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2029
  • Wer: 8.3235

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 2
  • eval_batch_size: 1
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 20000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.2652 0.1 2000 0.3469 15.3537
0.3273 0.2 4000 0.3151 14.1141
0.2696 0.3 6000 0.2955 13.2472
0.1725 0.4 8000 0.2787 11.6834
0.1741 0.5 10000 0.2648 11.0088
0.2037 0.6 12000 0.2470 10.1909
0.1586 0.7 14000 0.2333 9.4096
0.1548 0.8 16000 0.2184 8.9724
0.1799 1.08 18000 0.2064 8.2830
0.1165 1.18 20000 0.2029 8.3235

Framework versions

  • Transformers 4.25.1
  • Pytorch 1.10.0+cu102
  • Datasets 2.7.1
  • Tokenizers 0.13.2