Phi-3.5-MultiCap-tool-embedding-concat
This model is a fine-tuned version of microsoft/Phi-3.5-mini-instruct on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.5088
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 2
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.6816 | 0.2256 | 50 | 0.6683 |
0.5538 | 0.4512 | 100 | 0.5632 |
0.53 | 0.6768 | 150 | 0.5379 |
0.5764 | 0.9024 | 200 | 0.5253 |
0.5071 | 1.1280 | 250 | 0.5177 |
0.4961 | 1.3536 | 300 | 0.5132 |
0.4674 | 1.5792 | 350 | 0.5103 |
0.5158 | 1.8049 | 400 | 0.5088 |
Framework versions
- PEFT 0.12.0
- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.0
- Tokenizers 0.19.1
- Downloads last month
- 3
Model tree for sofyc/Phi-3.5-MultiCap-tool-embedding-concat
Base model
microsoft/Phi-3.5-mini-instruct