Suparious's picture
Added base_model tag in README.md
ce398f3 verified
---
base_model: MaziyarPanahi/Calme-7B-Instruct-v0.9
license: apache-2.0
tags:
- generated_from_trainer
- mistral
- 7b
- calme
- finetuned
- quantized
- 4-bit
- AWQ
- transformers
- pytorch
- mistral
- instruct
- text-generation
- conversational
- autotrain_compatible
- endpoints_compatible
- text-generation-inference
- region:us
- finetune
- chatml
model-index:
- name: Calme-7B-Instruct-v0.9
results: []
model_name: Calme-7B-Instruct-v0.9
inference: false
model_creator: MaziyarPanahi
pipeline_tag: text-generation
quantized_by: Suparious
---
# MaziyarPanahi/Calme-7B-Instruct-v0.9 AWQ
- Model creator: [MaziyarPanahi](https://huggingface.co/MaziyarPanahi)
- Original model: [Calme-7B-Instruct-v0.9](https://huggingface.co/MaziyarPanahi/Calme-7B-Instruct-v0.9)
<img src="https://cdn-uploads.huggingface.co/production/uploads/5fd5e18a90b6dc4633f6d292/LzEf6vvq2qIiys-q7l9Hq.webp" width="550" />
## Model Summary
Calme-7B is a state-of-the-art language model with 7 billion parameters, fine-tuned over high-quality datasets on top of Mistral-7B. The Calme-7B models excel in generating text that resonates with clarity, calmness, and coherence.
## How to use
## How to use
### Install the necessary packages
```bash
pip install --upgrade autoawq autoawq-kernels
```
### Example Python code
```python
from awq import AutoAWQForCausalLM
from transformers import AutoTokenizer, TextStreamer
model_path = "solidrust/Calme-7B-Instruct-v0.9-AWQ"
system_message = "You are Calme, incarnated a powerful AI with everything."
# Load model
model = AutoAWQForCausalLM.from_quantized(model_path,
fuse_layers=True)
tokenizer = AutoTokenizer.from_pretrained(model_path,
trust_remote_code=True)
streamer = TextStreamer(tokenizer,
skip_prompt=True,
skip_special_tokens=True)
# Convert prompt to tokens
prompt_template = """\
<|im_start|>system
{system_message}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant"""
prompt = "You're standing on the surface of the Earth. "\
"You walk one mile south, one mile west and one mile north. "\
"You end up exactly where you started. Where are you?"
tokens = tokenizer(prompt_template.format(system_message=system_message,prompt=prompt),
return_tensors='pt').input_ids.cuda()
# Generate output
generation_output = model.generate(tokens,
streamer=streamer,
max_new_tokens=512)
```
### About AWQ
AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings.
AWQ models are currently supported on Linux and Windows, with NVidia GPUs only. macOS users: please use GGUF models instead.
It is supported by:
- [Text Generation Webui](https://github.com/oobabooga/text-generation-webui) - using Loader: AutoAWQ
- [vLLM](https://github.com/vllm-project/vllm) - version 0.2.2 or later for support for all model types.
- [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference)
- [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later, from any code or client that supports Transformers
- [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) - for use from Python code
## Prompt template: ChatML
```plaintext
<|im_start|>system
{system_message}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant
```