Newton-7B-AWQ / README.md
Suparious's picture
Updated base_model tag in README.md
982d872 verified
metadata
license: apache-2.0
tags:
  - axolotl
  - finetune
  - qlora
  - quantized
  - 4-bit
  - AWQ
  - pytorch
  - mistral
  - instruct
  - text-generation
  - conversational
  - license:apache-2.0
  - autotrain_compatible
  - endpoints_compatible
  - text-generation-inference
base_model: Weyaxi/Newton-7B
datasets:
  - hendrycks/competition_math
  - allenai/ai2_arc
  - camel-ai/physics
  - camel-ai/chemistry
  - camel-ai/biology
  - camel-ai/math
  - STEM-AI-mtl/Electrical-engineering
  - openbookqa
  - piqa
  - metaeval/reclor
  - mandyyyyii/scibench
  - derek-thomas/ScienceQA
  - sciq
  - TIGER-Lab/ScienceEval
language:
  - en
library_name: transformers
model_creator: Weyaxi
model_name: Newton-7B
model_type: mistral
pipeline_tag: text-generation
inference: false
prompt_template: |
  <|im_start|>system
  {system_message}<|im_end|>
  <|im_start|>user
  {prompt}<|im_end|>
  <|im_start|>assistant
quantized_by: Suparious

Weyaxi/Newton-7B AWQ

image/jpeg

Model Summary

This model is a fine-tuned version of openchat/openchat-3.5-0106 on datasets related to science.

This model is fine-tuned using QLoRa and axolotl.

This model's training was sponsored by sablo.ai.

How to use

Install the necessary packages

pip install --upgrade autoawq autoawq-kernels

Example Python code

from awq import AutoAWQForCausalLM
from transformers import AutoTokenizer, TextStreamer

model_path = "solidrust/Newton-7B-AWQ"
system_message = "You are Newton, incarnated as a powerful AI."

# Load model
model = AutoAWQForCausalLM.from_quantized(model_path,
                                          fuse_layers=True)
tokenizer = AutoTokenizer.from_pretrained(model_path,
                                          trust_remote_code=True)
streamer = TextStreamer(tokenizer,
                        skip_prompt=True,
                        skip_special_tokens=True)

# Convert prompt to tokens
prompt_template = """\
<|im_start|>system
{system_message}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant"""

prompt = "You're standing on the surface of the Earth. "\
        "You walk one mile south, one mile west and one mile north. "\
        "You end up exactly where you started. Where are you?"

tokens = tokenizer(prompt_template.format(system_message=system_message,prompt=prompt),
                  return_tensors='pt').input_ids.cuda()

# Generate output
generation_output = model.generate(tokens,
                                  streamer=streamer,
                                  max_new_tokens=512)

About AWQ

AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings.

AWQ models are currently supported on Linux and Windows, with NVidia GPUs only. macOS users: please use GGUF models instead.

It is supported by:

Prompt template: ChatML

<|im_start|>system
{system_message}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant