Edit model card

lilt-en-funsd

This model is a fine-tuned version of SCUT-DLVCLab/lilt-roberta-en-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.5254
  • Answer: {'precision': 0.8486238532110092, 'recall': 0.9057527539779682, 'f1': 0.8762581409117821, 'number': 817}
  • Header: {'precision': 0.65625, 'recall': 0.5294117647058824, 'f1': 0.586046511627907, 'number': 119}
  • Question: {'precision': 0.9026629935720845, 'recall': 0.9127205199628597, 'f1': 0.9076638965835643, 'number': 1077}
  • Overall Precision: 0.8683
  • Overall Recall: 0.8872
  • Overall F1: 0.8776
  • Overall Accuracy: 0.8064

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 2500
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Answer Header Question Overall Precision Overall Recall Overall F1 Overall Accuracy
0.4037 10.53 200 1.0901 {'precision': 0.8236658932714617, 'recall': 0.8690330477356181, 'f1': 0.8457415128052411, 'number': 817} {'precision': 0.42528735632183906, 'recall': 0.6218487394957983, 'f1': 0.5051194539249146, 'number': 119} {'precision': 0.871356783919598, 'recall': 0.8050139275766016, 'f1': 0.8368725868725869, 'number': 1077} 0.8129 0.8202 0.8165 0.7725
0.0456 21.05 400 1.4102 {'precision': 0.8165745856353591, 'recall': 0.9045287637698899, 'f1': 0.8583042973286875, 'number': 817} {'precision': 0.6071428571428571, 'recall': 0.42857142857142855, 'f1': 0.5024630541871921, 'number': 119} {'precision': 0.8835304822565969, 'recall': 0.9015784586815228, 'f1': 0.8924632352941178, 'number': 1077} 0.8434 0.8748 0.8588 0.7879
0.0146 31.58 600 1.5424 {'precision': 0.834056399132321, 'recall': 0.9412484700122399, 'f1': 0.8844163312248418, 'number': 817} {'precision': 0.5118110236220472, 'recall': 0.5462184873949579, 'f1': 0.5284552845528455, 'number': 119} {'precision': 0.9035004730368968, 'recall': 0.8867223769730733, 'f1': 0.895032802249297, 'number': 1077} 0.8495 0.8887 0.8687 0.7913
0.0074 42.11 800 1.4579 {'precision': 0.8571428571428571, 'recall': 0.8886168910648715, 'f1': 0.8725961538461537, 'number': 817} {'precision': 0.5798319327731093, 'recall': 0.5798319327731093, 'f1': 0.5798319327731093, 'number': 119} {'precision': 0.8590192644483362, 'recall': 0.9108635097493036, 'f1': 0.8841820639927895, 'number': 1077} 0.8425 0.8823 0.8619 0.8063
0.0043 52.63 1000 1.8745 {'precision': 0.8458100558659218, 'recall': 0.9265605875152999, 'f1': 0.8843457943925235, 'number': 817} {'precision': 0.5641025641025641, 'recall': 0.5546218487394958, 'f1': 0.559322033898305, 'number': 119} {'precision': 0.9229268292682927, 'recall': 0.8783658310120706, 'f1': 0.9000951474785919, 'number': 1077} 0.8684 0.8788 0.8736 0.7883
0.0035 63.16 1200 1.8084 {'precision': 0.8344086021505376, 'recall': 0.9498164014687882, 'f1': 0.8883800801373782, 'number': 817} {'precision': 0.580952380952381, 'recall': 0.5126050420168067, 'f1': 0.5446428571428571, 'number': 119} {'precision': 0.9076343072573044, 'recall': 0.8941504178272981, 'f1': 0.9008419083255378, 'number': 1077} 0.8588 0.8942 0.8761 0.7965
0.0022 73.68 1400 1.4973 {'precision': 0.8706586826347306, 'recall': 0.8898408812729498, 'f1': 0.8801452784503632, 'number': 817} {'precision': 0.6176470588235294, 'recall': 0.5294117647058824, 'f1': 0.5701357466063349, 'number': 119} {'precision': 0.8852313167259787, 'recall': 0.9238625812441968, 'f1': 0.9041344843253067, 'number': 1077} 0.8661 0.8867 0.8763 0.8137
0.0025 84.21 1600 1.5254 {'precision': 0.8486238532110092, 'recall': 0.9057527539779682, 'f1': 0.8762581409117821, 'number': 817} {'precision': 0.65625, 'recall': 0.5294117647058824, 'f1': 0.586046511627907, 'number': 119} {'precision': 0.9026629935720845, 'recall': 0.9127205199628597, 'f1': 0.9076638965835643, 'number': 1077} 0.8683 0.8872 0.8776 0.8064
0.0006 94.74 1800 1.5072 {'precision': 0.8583042973286876, 'recall': 0.9045287637698899, 'f1': 0.8808104886769966, 'number': 817} {'precision': 0.64, 'recall': 0.5378151260504201, 'f1': 0.5844748858447488, 'number': 119} {'precision': 0.8841354723707665, 'recall': 0.9210770659238626, 'f1': 0.9022282855843565, 'number': 1077} 0.8617 0.8917 0.8765 0.8085
0.0004 105.26 2000 1.5540 {'precision': 0.847926267281106, 'recall': 0.9008567931456548, 'f1': 0.8735905044510385, 'number': 817} {'precision': 0.5959595959595959, 'recall': 0.4957983193277311, 'f1': 0.5412844036697246, 'number': 119} {'precision': 0.8814016172506739, 'recall': 0.9108635097493036, 'f1': 0.8958904109589041, 'number': 1077} 0.8538 0.8823 0.8678 0.8014
0.0002 115.79 2200 1.5880 {'precision': 0.8609501738122828, 'recall': 0.9094247246022031, 'f1': 0.8845238095238096, 'number': 817} {'precision': 0.5876288659793815, 'recall': 0.4789915966386555, 'f1': 0.5277777777777778, 'number': 119} {'precision': 0.8843416370106761, 'recall': 0.9229340761374187, 'f1': 0.9032258064516129, 'number': 1077} 0.8608 0.8912 0.8758 0.7986
0.0003 126.32 2400 1.5619 {'precision': 0.8586326767091541, 'recall': 0.9069767441860465, 'f1': 0.8821428571428572, 'number': 817} {'precision': 0.6021505376344086, 'recall': 0.47058823529411764, 'f1': 0.5283018867924528, 'number': 119} {'precision': 0.8775510204081632, 'recall': 0.9182915506035283, 'f1': 0.8974591651542649, 'number': 1077} 0.8574 0.8872 0.8721 0.8060

Framework versions

  • Transformers 4.38.1
  • Pytorch 2.2.1+cu118
  • Datasets 2.17.1
  • Tokenizers 0.15.2
Downloads last month
6
Safetensors
Model size
130M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for someet/lilt-en-funsd

Finetuned
(44)
this model