File size: 7,863 Bytes
ffefe89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
---
license: mit
base_model: SCUT-DLVCLab/lilt-roberta-en-base
tags:
- generated_from_trainer
model-index:
- name: lilt-en-funsd
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# lilt-en-funsd

This model is a fine-tuned version of [SCUT-DLVCLab/lilt-roberta-en-base](https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.5254
- Answer: {'precision': 0.8486238532110092, 'recall': 0.9057527539779682, 'f1': 0.8762581409117821, 'number': 817}
- Header: {'precision': 0.65625, 'recall': 0.5294117647058824, 'f1': 0.586046511627907, 'number': 119}
- Question: {'precision': 0.9026629935720845, 'recall': 0.9127205199628597, 'f1': 0.9076638965835643, 'number': 1077}
- Overall Precision: 0.8683
- Overall Recall: 0.8872
- Overall F1: 0.8776
- Overall Accuracy: 0.8064

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 2500
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Answer                                                                                                   | Header                                                                                                    | Question                                                                                                  | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|:-------------:|:------:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
| 0.4037        | 10.53  | 200  | 1.0901          | {'precision': 0.8236658932714617, 'recall': 0.8690330477356181, 'f1': 0.8457415128052411, 'number': 817} | {'precision': 0.42528735632183906, 'recall': 0.6218487394957983, 'f1': 0.5051194539249146, 'number': 119} | {'precision': 0.871356783919598, 'recall': 0.8050139275766016, 'f1': 0.8368725868725869, 'number': 1077}  | 0.8129            | 0.8202         | 0.8165     | 0.7725           |
| 0.0456        | 21.05  | 400  | 1.4102          | {'precision': 0.8165745856353591, 'recall': 0.9045287637698899, 'f1': 0.8583042973286875, 'number': 817} | {'precision': 0.6071428571428571, 'recall': 0.42857142857142855, 'f1': 0.5024630541871921, 'number': 119} | {'precision': 0.8835304822565969, 'recall': 0.9015784586815228, 'f1': 0.8924632352941178, 'number': 1077} | 0.8434            | 0.8748         | 0.8588     | 0.7879           |
| 0.0146        | 31.58  | 600  | 1.5424          | {'precision': 0.834056399132321, 'recall': 0.9412484700122399, 'f1': 0.8844163312248418, 'number': 817}  | {'precision': 0.5118110236220472, 'recall': 0.5462184873949579, 'f1': 0.5284552845528455, 'number': 119}  | {'precision': 0.9035004730368968, 'recall': 0.8867223769730733, 'f1': 0.895032802249297, 'number': 1077}  | 0.8495            | 0.8887         | 0.8687     | 0.7913           |
| 0.0074        | 42.11  | 800  | 1.4579          | {'precision': 0.8571428571428571, 'recall': 0.8886168910648715, 'f1': 0.8725961538461537, 'number': 817} | {'precision': 0.5798319327731093, 'recall': 0.5798319327731093, 'f1': 0.5798319327731093, 'number': 119}  | {'precision': 0.8590192644483362, 'recall': 0.9108635097493036, 'f1': 0.8841820639927895, 'number': 1077} | 0.8425            | 0.8823         | 0.8619     | 0.8063           |
| 0.0043        | 52.63  | 1000 | 1.8745          | {'precision': 0.8458100558659218, 'recall': 0.9265605875152999, 'f1': 0.8843457943925235, 'number': 817} | {'precision': 0.5641025641025641, 'recall': 0.5546218487394958, 'f1': 0.559322033898305, 'number': 119}   | {'precision': 0.9229268292682927, 'recall': 0.8783658310120706, 'f1': 0.9000951474785919, 'number': 1077} | 0.8684            | 0.8788         | 0.8736     | 0.7883           |
| 0.0035        | 63.16  | 1200 | 1.8084          | {'precision': 0.8344086021505376, 'recall': 0.9498164014687882, 'f1': 0.8883800801373782, 'number': 817} | {'precision': 0.580952380952381, 'recall': 0.5126050420168067, 'f1': 0.5446428571428571, 'number': 119}   | {'precision': 0.9076343072573044, 'recall': 0.8941504178272981, 'f1': 0.9008419083255378, 'number': 1077} | 0.8588            | 0.8942         | 0.8761     | 0.7965           |
| 0.0022        | 73.68  | 1400 | 1.4973          | {'precision': 0.8706586826347306, 'recall': 0.8898408812729498, 'f1': 0.8801452784503632, 'number': 817} | {'precision': 0.6176470588235294, 'recall': 0.5294117647058824, 'f1': 0.5701357466063349, 'number': 119}  | {'precision': 0.8852313167259787, 'recall': 0.9238625812441968, 'f1': 0.9041344843253067, 'number': 1077} | 0.8661            | 0.8867         | 0.8763     | 0.8137           |
| 0.0025        | 84.21  | 1600 | 1.5254          | {'precision': 0.8486238532110092, 'recall': 0.9057527539779682, 'f1': 0.8762581409117821, 'number': 817} | {'precision': 0.65625, 'recall': 0.5294117647058824, 'f1': 0.586046511627907, 'number': 119}              | {'precision': 0.9026629935720845, 'recall': 0.9127205199628597, 'f1': 0.9076638965835643, 'number': 1077} | 0.8683            | 0.8872         | 0.8776     | 0.8064           |
| 0.0006        | 94.74  | 1800 | 1.5072          | {'precision': 0.8583042973286876, 'recall': 0.9045287637698899, 'f1': 0.8808104886769966, 'number': 817} | {'precision': 0.64, 'recall': 0.5378151260504201, 'f1': 0.5844748858447488, 'number': 119}                | {'precision': 0.8841354723707665, 'recall': 0.9210770659238626, 'f1': 0.9022282855843565, 'number': 1077} | 0.8617            | 0.8917         | 0.8765     | 0.8085           |
| 0.0004        | 105.26 | 2000 | 1.5540          | {'precision': 0.847926267281106, 'recall': 0.9008567931456548, 'f1': 0.8735905044510385, 'number': 817}  | {'precision': 0.5959595959595959, 'recall': 0.4957983193277311, 'f1': 0.5412844036697246, 'number': 119}  | {'precision': 0.8814016172506739, 'recall': 0.9108635097493036, 'f1': 0.8958904109589041, 'number': 1077} | 0.8538            | 0.8823         | 0.8678     | 0.8014           |
| 0.0002        | 115.79 | 2200 | 1.5880          | {'precision': 0.8609501738122828, 'recall': 0.9094247246022031, 'f1': 0.8845238095238096, 'number': 817} | {'precision': 0.5876288659793815, 'recall': 0.4789915966386555, 'f1': 0.5277777777777778, 'number': 119}  | {'precision': 0.8843416370106761, 'recall': 0.9229340761374187, 'f1': 0.9032258064516129, 'number': 1077} | 0.8608            | 0.8912         | 0.8758     | 0.7986           |
| 0.0003        | 126.32 | 2400 | 1.5619          | {'precision': 0.8586326767091541, 'recall': 0.9069767441860465, 'f1': 0.8821428571428572, 'number': 817} | {'precision': 0.6021505376344086, 'recall': 0.47058823529411764, 'f1': 0.5283018867924528, 'number': 119} | {'precision': 0.8775510204081632, 'recall': 0.9182915506035283, 'f1': 0.8974591651542649, 'number': 1077} | 0.8574            | 0.8872         | 0.8721     | 0.8060           |


### Framework versions

- Transformers 4.38.1
- Pytorch 2.2.1+cu118
- Datasets 2.17.1
- Tokenizers 0.15.2