modello_finetuning1 / README.md
soniarocca31's picture
End of training
91362e1
metadata
license: apache-2.0
base_model: distilbert-base-multilingual-cased
tags:
  - generated_from_trainer
datasets:
  - swiss_law_area_prediction
metrics:
  - precision
  - recall
  - f1
model-index:
  - name: modello_finetuning1
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: swiss_law_area_prediction
          type: swiss_law_area_prediction
          config: main
          split: validation
          args: main
        metrics:
          - name: Precision
            type: precision
            value: 0.9922018189992046
          - name: Recall
            type: recall
            value: 0.9901734200771951
          - name: F1
            type: f1
            value: 0.9911413155243709

modello_finetuning1

This model is a fine-tuned version of distilbert-base-multilingual-cased on the swiss_law_area_prediction dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0506
  • Precision: 0.9922
  • Recall: 0.9902
  • F1: 0.9911

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1
0.0834 0.38 500 0.1812 0.9793 0.9677 0.9730
0.1029 0.76 1000 0.0973 0.9875 0.9834 0.9854
0.0066 1.15 1500 0.0647 0.9864 0.9886 0.9875
0.0008 1.53 2000 0.0619 0.9913 0.9893 0.9902
0.0003 1.91 2500 0.0506 0.9922 0.9902 0.9911

Framework versions

  • Transformers 4.36.1
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0