librarian-bot's picture
Librarian Bot: Add base_model information to model
4869469
|
raw
history blame
3.68 kB
---
language:
- en
license: apache-2.0
library_name: adapter-transformers
tags:
- generated_from_trainer
datasets:
- samsum
metrics:
- rouge
pipeline_tag: summarization
inference: true
base_model: braindao/flan-t5-cnn
model-index:
- name: flan-t5-base
results:
- task:
type: summarization
name: Summarization
dataset:
name: samsum
type: samsum
split: validation
metrics:
- type: rogue1
value: 46.819522%
- type: rouge2
value: 20.898074%
- type: rougeL
value: 37.300937%
- type: rougeLsum
value: 37.271341%
---
# flan-t5-base-cnn-samsum-lora
This model is a fine-tuned version of [braindao/flan-t5-cnn](https://huggingface.co/braindao/flan-t5-cnn) on the [samsum](https://huggingface.co/datasets/samsum) dataset.
The base model [braindao/flan-t5-cnn](https://huggingface.co/braindao/flan-t5-cnn) is a fine-tuned verstion of [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) on the cnn_dailymail 3.0.0 dataset.
## Model API Spaces
Please visit HF Spaces [sooolee/summarize-transcripts-gradio](https://huggingface.co/spaces/sooolee/summarize-transcripts-gradio) for Gradio API. This API takes YouTube 'Video_ID' as the input.
## Model description
* This model further finetuned [braindao/flan-t5-cnn](https://huggingface.co/braindao/flan-t5-cnn) on the more conversational samsum dataset.
* Huggingface [PEFT Library](https://github.com/huggingface/peft) LoRA (r = 16) and bitsandbytes int-8 was used to speed up training and reduce the model size.
* Only 1.7M parameters were trained (0.71% of original flan-t5-base 250M parameters).
* The model checkpoint is just 7MB.
## Intended uses & limitations
Summarize transcripts such as YouTube transcripts.
## Training and evaluation data
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
- train_loss: 1.47
### How to use
Note 'max_new_tokens=60' is used in the below example to control the length of the summary. FLAN-T5 model has max generation length = 200 and min generation length = 20 (default).
```python
import torch
from peft import PeftModel, PeftConfig
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
# Load peft config for pre-trained checkpoint etc.
peft_model_id = "sooolee/flan-t5-base-cnn-samsum-lora"
config = PeftConfig.from_pretrained(peft_model_id)
# load base LLM model and tokenizer
model = AutoModelForSeq2SeqLM.from_pretrained(config.base_model_name_or_path, device_map='auto') # load_in_8bit=True,
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
# Load the Lora model
model = PeftModel.from_pretrained(model, peft_model_id, device_map='auto')
# Tokenize the text inputs
texts = "<e.g. Part of YouTube Transcript>"
inputs = tokenizer(texts, return_tensors="pt", padding=True, ) # truncation=True
# Make inferences
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
with torch.no_grad():
output = self.model.generate(input_ids=inputs["input_ids"].to(device), max_new_tokens=60, do_sample=True, top_p=0.9)
summary = self.tokenizer.batch_decode(output.detach().cpu().numpy(), skip_special_tokens=True)
summary
```
### Framework versions
- Transformers 4.27.2
- Pytorch 1.13.1+cu116
- Datasets 2.9.0
- Tokenizers 0.13.3
## Other
Please check out the BART-Large-CNN-Samsum model fine-tuned for the same purpose: [sooolee/bart-large-cnn-finetuned-samsum-lora](https://huggingface.co/sooolee/bart-large-cnn-finetuned-samsum-lora)